Induced Gravity Models with Exact Bounce Solutions

[1]  G. Venturi,et al.  General solutions of integrable cosmological models with non-minimal coupling , 2016, Physics of Particles and Nuclei Letters.

[2]  E. Pozdeeva,et al.  Possible evolution of a bouncing universe in cosmological models with non-minimally coupled scalar fields , 2016, 1608.08214.

[3]  D. Polarski,et al.  Bouncing universes in scalar-tensor gravity around conformal invariance , 2016, 1603.06648.

[4]  G. Venturi,et al.  Interdependence between integrable cosmological models with minimal and non-minimal coupling , 2015, 1509.00590.

[5]  A. Starobinsky,et al.  Bouncing universes in scalar-tensor gravity models admitting negative potentials , 2015, 1504.07927.

[6]  G. W. Pratt,et al.  Planck 2015. XX. Constraints on inflation , 2015, 1502.02114.

[7]  E. Pozdeeva,et al.  Stable Exact Cosmological Solutions in Induced Gravity Models , 2014, 1401.7550.

[8]  T. Harko,et al.  Arbitrary scalar-field and quintessence cosmological models , 2013, 1310.7167.

[9]  A. Sorin,et al.  Integrable scalar cosmologies , 2013, 1310.5340.

[10]  N. V. Bulatov,et al.  Non-minimally coupled cosmological models with the Higgs-like potentials and negative cosmological constant , 2012, 1206.2801.

[11]  A. Sorin,et al.  Integrable scalar cosmologies.II. Can they fit into Gauged Extended Supergravity or be encoded in N=1 superpotentials? , 2014 .

[12]  G. Venturi,et al.  Integrable cosmological models with non-minimally coupled scalar fields , 2013, 1312.3540.

[13]  A. Sorin,et al.  Integrable Scalar Cosmologies I. Foundations and links with String Theory , 2013, 1307.1910.

[14]  G. Venturi,et al.  Reconstruction of Scalar Potentials in Modified Gravity Models , 2012, 1211.6272.

[15]  R. Gorbachev,et al.  Induced Gravity Cosmological Model with Non-positively Defined Higgs Potential , 2013 .

[16]  G. Venturi,et al.  Dynamical Dark Energy and Spontaneously Generated Gravity , 2012, 1204.2625.

[17]  A. Kamenshchik,et al.  Reconstruction of scalar field and tachyon potentials for closed cosmological models , 2011 .

[18]  G. Venturi,et al.  Reconstruction of scalar potentials in induced gravity and cosmology , 2011, 1104.2125.

[19]  A. Yurov,et al.  Total energy potential as a superpotential in integrable cosmological models , 2011 .

[20]  J. Cervantes-Cota,et al.  Induced Gravity and the Attractor Dynamics of Dark Energy/Dark Matter , 2010, 1010.2237.

[21]  I. Aref’eva,et al.  Stable exact solutions in cosmological models with two scalar fields , 2009, 0911.5105.

[22]  F. Finelli,et al.  Inflation and reheating in induced gravity , 2009, 0906.1902.

[23]  I. Fomin,et al.  On calculation of the cosmological parameters in exact models of inflation , 2008, 1704.05378.

[24]  A. Andrianov,et al.  Reconstruction of scalar potentials in two-field cosmological models , 2007, 0711.4300.

[25]  P. Townsend Hamilton–Jacobi mechanics from pseudo-supersymmetry , 2007, 0710.5178.

[26]  S. Vernov Construction of exact solutions in two-field cosmological models , 2006, astro-ph/0612487.

[27]  D. Bazeia,et al.  First-order formalism for dust , 2006 .

[28]  D. Bazeia,et al.  First-order formalism for dark energy and dust , 2006, astro-ph/0611770.

[29]  Kostas Skenderis,et al.  Hamilton-Jacobi method for Curved Domain Walls and Cosmologies , 2006, hep-th/0609056.

[30]  I. Aref’eva,et al.  Exact solution in a string cosmological model , 2006 .

[31]  D. Bazeia,et al.  First-order formalism and dark energy , 2005, astro-ph/0512197.

[32]  I. Aref’eva,et al.  Crossing the w = - 1 barrier in the D3-brane dark energy model , 2005, astro-ph/0507067.

[33]  V. Shchigolev,et al.  New classes of exact solutions in inflationary cosmology , 1998 .

[34]  J. Cervantes-Cota,et al.  Induced gravity inflation in the standard model of particle physics , 1995, astro-ph/9505069.

[35]  Bond,et al.  Nonlinear evolution of long-wavelength metric fluctuations in inflationary models. , 1990, Physical review. D, Particles and fields.

[36]  A. Muslimov On the scalar field dynamics in a spatially flat Friedman universe , 1990 .

[37]  A G Muslimov On the scalar field dynamics in a spatially flat Friedman universe , 1990 .

[38]  Fred Cooper,et al.  Cosmology and broken scale invariance , 1981 .

[39]  A. Sakharov SPECIAL ISSUE: Vacuum quantum fluctuations in curved space and the theory of gravitation , 1991 .