WORST-CASE INPUT-OUTPUT IDENTIFICATION

We consider worst-case l 1 identication of causal linear shift-invariant systems from time series. Many results are given on general aspects of identi-cation algorithm performance, existence of optimal algorithms, robust convergence , and input (experiment) design. The identication methodology studied here is compatible with the modelling requirements of modern robust control design. Notation R; R + the reals, and the nonnegative reals, respectively. Z + the set of positive integers. R n the set of all n-tuples of real numbers. l 1 the normed space of sequences x = fx k 2 Rg k0 with the norm kxk 1 = sup k0 jx k j < 1. l 1 the normed space of sequences x = fx k 2 Rg k0 with the norm kxk 1 = P k0 jx k j < 1. We shall use the notation l 1 also for bounded sequence spaces for which the integer-valued indexing set can be put into one-to-one correspondence with the set of natural numbers f0g [ Z + .

[1]  P. M. Mäkilät Laguerre methods and H ∞ identification of continuous-time systems , 1991 .

[2]  M. Milanese,et al.  ESTIMATION AND PREDICTION IN THE PRESENCE OF UNKNOWN BUT BOUNDED UNCERTAINTY: A SURVEY , 1989 .

[3]  C. Jacobson,et al.  Worst Case System Identification in l1: Optimal Algorithms and Error Bounds , 1991, 1991 American Control Conference.

[4]  Henryk Wozniakowski,et al.  Information-based complexity , 1987, Nature.

[5]  J. P. Norton,et al.  Identification and application of bounded-parameter models , 1985, Autom..

[6]  Jan C. Willems,et al.  From time series to linear system - Part III: Approximate modelling , 1987, Autom..

[7]  Eric Walter,et al.  Experiment design in a bounded-error context: Comparison with D-optimality , 1989, Autom..

[8]  C. N. Nett,et al.  Fundamentals of control-oriented system identification and their application for identification in H∞ , 1991, 1991 American Control Conference.

[9]  R. Tempo,et al.  Optimal algorithms theory for robust estimation and prediction , 1985 .

[10]  G. Zames On the metric complexity of casual linear systems: ε -Entropy and ε -Dimension for continuous time , 1979 .

[11]  A. Friedman Foundations of modern analysis , 1970 .

[12]  Pertti M. Mäkilä,et al.  On identification of stable systems and optimal approximation , 1991, Autom..

[13]  J. P. Norton,et al.  Identification and Application of Bounded-Parameter Models , 1985 .

[14]  A. Helmicki,et al.  Identification in H∞: a robustly convergent, nonlinear algorithm , 1990, 1990 American Control Conference.

[15]  Stephen P. Boyd,et al.  Identification of Systems with Parametric and Nonparametric Uncertainty , 1990, 1990 American Control Conference.

[16]  A. Helmicki,et al.  H∞ identification of stable LSI systems: a scheme with direct application to controller design , 1989, 1989 American Control Conference.

[17]  J. Pearson,et al.  l^{1} -optimal feedback controllers for MIMO discrete-time systems , 1987 .

[18]  M.A. Dahleh,et al.  Robust and Optimal Identification in the l1 Norm , 1991, 1991 American Control Conference.

[19]  Y. F. Huang,et al.  On the value of information in system identification - Bounded noise case , 1982, Autom..

[20]  Roy S. Smith,et al.  Towards a Methodology for Robust Parameter Identification , 1990, 1990 American Control Conference.

[21]  Antonio Vicino,et al.  Conditionally optimal algorithms and estimation of reduced order models , 1988, J. Complex..

[22]  P. Graefe Linear stochastic systems , 1966 .

[23]  R. Tempo,et al.  Maximum likelihood estimators and worst case optimal algorithms for system identification , 1988 .

[24]  Andrew Donald Booth,et al.  Theory of the transmission and processing of information , 1961 .

[25]  Lennart Ljung,et al.  On Estimation of Transfer Function Error Bounds , 1991 .

[26]  J. Norton Recursive computation of inner bounds for the parameters of linear models , 1989 .

[27]  P. Mäkilä Robust identification and Galois sequences , 1991 .