On block preconditioners for saddle point problems with singular or indefinite (1, 1) block

We discuss a class of preconditioning methods for the iterative solution of symmetric algebraic saddle point problems, where the (1, 1) block matrix may be indefinite or singular. Such problems may arise, e.g. from discrete approximations of certain partial differential equations, such as the Maxwell time harmonic equations. We prove that, under mild assumptions on the underlying problem, a class of block preconditioners (including block diagonal, triangular and symmetric indefinite preconditioners) can be chosen in a way which guarantees that the convergence rate of the preconditioned conjugate residuals method is independent of the discretization mesh parameter. We provide examples of such preconditioners that do not require additional scaling. Copyright © 2010 John Wiley & Sons, Ltd.

[1]  G. Golub,et al.  Inexact and preconditioned Uzawa algorithms for saddle point problems , 1994 .

[2]  Maxim A. Olshanskii,et al.  An Augmented Lagrangian Approach to Linearized Problems in Hydrodynamic Stability , 2008, SIAM J. Sci. Comput..

[3]  Martin Stoll,et al.  A Bramble-Pasciak-like method with applications in optimization , 2008 .

[4]  Andrea Toselli,et al.  Domain decomposition methods : algorithms and theory , 2005 .

[5]  Z. Cao Positive stable block triangular preconditioners for symmetric saddle point problems , 2007 .

[6]  Axel Klawonn,et al.  An Optimal Preconditioner for a Class of Saddle Point Problems with a Penalty Term , 1995, SIAM J. Sci. Comput..

[7]  Apostol T. Vassilev,et al.  Analysis of the Inexact Uzawa Algorithm for Saddle Point Problems , 1997 .

[8]  T. Manteuffel,et al.  A taxonomy for conjugate gradient methods , 1990 .

[9]  Hamilton-Jacobi Equations,et al.  Multigrid Methods for , 2011 .

[10]  Nicholas I. M. Gould,et al.  Using constraint preconditioners with regularized saddle-point problems , 2007, Comput. Optim. Appl..

[11]  Chen Greif,et al.  Preconditioners for the discretized time-harmonic Maxwell equations in mixed form , 2007, Numer. Linear Algebra Appl..

[12]  Vivette Girault,et al.  Finite Element Methods for Navier-Stokes Equations - Theory and Algorithms , 1986, Springer Series in Computational Mathematics.

[13]  Dietrich Braess,et al.  A multigrid method for a parameter dependent problem in solid mechanics , 1990 .

[14]  Piotr Krzyzanowski,et al.  On Block Preconditioners for Nonsymmetric Saddle Point Problems , 2001, SIAM J. Sci. Comput..

[15]  Gene H. Golub,et al.  An Algebraic Analysis of a Block Diagonal Preconditioner for Saddle Point Systems , 2005, SIAM J. Matrix Anal. Appl..

[16]  A. Klawonn Preconditioners for Indefinite Problems , 1996 .

[17]  Zhi-Hao Cao,et al.  Augmentation block preconditioners for saddle point‐type matrices with singular (1, 1) blocks , 2008, Numer. Linear Algebra Appl..

[18]  Anders Forsgren,et al.  Iterative Solution of Augmented Systems Arising in Interior Methods , 2007, SIAM J. Optim..

[19]  Gene H. Golub,et al.  A Note on Preconditioning for Indefinite Linear Systems , 1999, SIAM J. Sci. Comput..

[20]  Joachim Schöberl,et al.  Symmetric Indefinite Preconditioners for Saddle Point Problems with Applications to PDE-Constrained Optimization Problems , 2007, SIAM J. Matrix Anal. Appl..

[21]  A. H. Schatz,et al.  An observation concerning Ritz-Galerkin methods with indefinite bilinear forms , 1974 .

[22]  Chen Greif,et al.  A Preconditioner for Linear Systems Arising From Interior Point Optimization Methods , 2007, SIAM J. Sci. Comput..

[23]  Ragnar Winther,et al.  A Preconditioned Iterative Method for Saddlepoint Problems , 1992, SIAM J. Matrix Anal. Appl..

[24]  Harry Yserentant,et al.  Preconditioning indefinite discretization matrices , 1989 .

[25]  J. Pasciak,et al.  A preconditioning technique for indefinite systems resulting from mixed approximations of elliptic problems , 1988 .

[26]  Gene H. Golub,et al.  Numerical solution of saddle point problems , 2005, Acta Numerica.

[27]  Gene H. Golub,et al.  On Solving Block-Structured Indefinite Linear Systems , 2003, SIAM J. Sci. Comput..

[28]  D. Schötzau,et al.  Preconditioners for saddle point linear systems with highly singular blocks. , 2006 .

[29]  Michel Fortin,et al.  Mixed and Hybrid Finite Element Methods , 2011, Springer Series in Computational Mathematics.

[30]  Axel Klawonn,et al.  Block-Triangular Preconditioners for Saddle Point Problems with a Penalty Term , 1998, SIAM J. Sci. Comput..

[31]  Jia Liu,et al.  Block preconditioning for saddle point systems with indefinite (1, 1) block , 2007, Int. J. Comput. Math..

[32]  Walter Zulehner,et al.  Analysis of iterative methods for saddle point problems: a unified approach , 2002, Math. Comput..

[33]  W. Hackbusch Elliptic Differential Equations , 1992 .

[34]  A. Wathen,et al.  Fast iterative solution of stabilised Stokes systems part II: using general block preconditioners , 1994 .

[35]  R. Bank,et al.  A class of iterative methods for solving saddle point problems , 1989 .

[36]  Valeria Simoncini,et al.  Block triangular preconditioners for symmetric saddle-point problems , 2004 .

[37]  Martin Stoll,et al.  Combination Preconditioning and the Bramble-Pasciak+ Preconditioner , 2008, SIAM J. Matrix Anal. Appl..

[38]  J. Pasciak,et al.  Iterative techniques for time dependent Stokes problems , 1997 .

[39]  Ting-Zhu Huang,et al.  Block triangular preconditioners for the discretized time-harmonic Maxwell equations in mixed form , 2009, Computer Physics Communications.

[40]  Nicholas I. M. Gould,et al.  Constraint Preconditioning for Indefinite Linear Systems , 2000, SIAM J. Matrix Anal. Appl..