Centrifuge Study of the Effects of Lattice Leg on Penetration Resistance and Bearing Behavior of Spudcan Foundations in NC Clay

This paper reports the primary results of a centrifuge model study into the possible effects of the lattice leg on the penetration resistance and vertical bearing capacity of spudcan foundations in normally consolidated clay. Up to now, the possible effects of the lattice leg has been largely ignored in both research and design of spudcan foundation. Centrifuge experimental results show that there is an increase in penetration resistance for spudcan footing equipped with lattice leg, in comparison with spudcan footing connected to slender circular column leg as widely used by current research. Larger excess pore water pressure was generated by the spudcan penetration with lattice leg in compare with that without. Moreover, the presence of the lattice leg is shown to affect the cavity depth formed around the penetrated spudcan footing, which is simply assumed completely back flow for spudcan penetration in soft clay by SNAME (2008). It was found that the bearing capacity of spudcan foundation has been further underestimated by SNAME (2008) due to the neglecting of lattice leg effect. Taken altogether, this implies that changes in penetration resistance arising from the lattice leg may be due to the effect of the latter on the backflow pattern. Apart from highlighting the effect of the sleeve with big openings, the results also highlight the possible future use of sleeves to enhance the bearing capacity and possibly reduce the penetration of spudcan foundations in various soil deposits.Copyright © 2012 by ASME