Limits of Voronoi Diagrams
暂无分享,去创建一个
[1] James W. Walker,et al. Homotopy Type and Euler Characteristic of Partially Ordered Sets , 1981, Eur. J. Comb..
[2] W. Fulton,et al. A compactification of configuration spaces , 1994 .
[3] F. Frances Yao,et al. Computational Geometry , 1991, Handbook of Theoretical Computer Science, Volume A: Algorithms and Complexity.
[4] Joachim Gudmundsson,et al. Higher order Delaunay triangulations , 2000, Comput. Geom..
[5] Franz Aurenhammer,et al. A simple on-line randomized incremental algorithm for computing higher order Voronoi diagrams , 1992, Int. J. Comput. Geom. Appl..
[6] Leonidas J. Guibas,et al. Voronoi Diagrams of Moving Points , 1998, Int. J. Comput. Geom. Appl..
[7] Robert Ghrist,et al. Finding Topology in a Factory: Configuration Spaces , 2002, Am. Math. Mon..
[8] M. Berger,et al. Differential Geometry: Manifolds, Curves, and Surfaces , 1987 .
[9] Chee-Keng Yap,et al. Robust Geometric Computation , 2016, Encyclopedia of Algorithms.
[10] R. Pollack,et al. Advances in Discrete and Computational Geometry , 1999 .
[11] James R. Munkres,et al. Elements of algebraic topology , 1984 .
[12] K. D. Joshi. Introduction to General Topology , 1983 .
[13] Deformations of algebras over operads and Deligne's conjecture , 2000, math/0001151.
[14] J. van Leeuwen,et al. Discrete and Computational Geometry , 2002, Lecture Notes in Computer Science.
[15] D. Kendall. A Survey of the Statistical Theory of Shape , 1989 .
[16] Boris Aronov,et al. Results on k-sets and j-facets via continuous motion , 1998, SCG '98.
[17] Franz Aurenhammer,et al. A simple on-line randomized incremental algorithm for computing higher order Voronoi diagrams , 1991, SCG '91.
[18] D. T. Lee,et al. On k-Nearest Neighbor Voronoi Diagrams in the Plane , 1982, IEEE Transactions on Computers.
[19] A. Björner. Topological methods , 1996 .
[20] Satyan L. Devadoss. A Space of Cyclohedra , 2001, Discret. Comput. Geom..
[21] M. Kontsevich. Operads and Motives in Deformation Quantization , 1999, math/9904055.
[22] G. Ziegler. Lectures on Polytopes , 1994 .
[23] Herbert Edelsbrunner,et al. Algorithms in Combinatorial Geometry , 1987, EATCS Monographs in Theoretical Computer Science.
[24] Georges Voronoi. Nouvelles applications des paramètres continus à la théorie des formes quadratiques. Deuxième mémoire. Recherches sur les parallélloèdres primitifs. , 1908 .
[25] H. C. Corben,et al. Classical Mechanics (2nd ed.) , 1961 .
[26] Micha Sharir. k-sets and random hulls , 1993, Comb..
[27] John H. Conway,et al. The sensual (quadratic) form , 1997 .
[28] Satyan L. Devadoss. Tessellations of Moduli Spaces and the Mosaic Operad , 1998, math/9807010.
[29] Herbert Edelsbrunner,et al. Simulation of simplicity: a technique to cope with degenerate cases in geometric algorithms , 1988, SCG '88.
[30] Herbert Edelsbrunner,et al. Geometry and Topology for Mesh Generation , 2001, Cambridge monographs on applied and computational mathematics.
[31] H. Coxeter,et al. Generators and relations for discrete groups , 1957 .
[32] Kenneth L. Clarkson,et al. Applications of random sampling in computational geometry, II , 1988, SCG '88.
[33] P. Orlik,et al. Arrangements Of Hyperplanes , 1992 .
[34] E. Rees. Notes on Geometry , 1983 .