An improved Yolov5s based on transformer backbone network for detection and classification of bronchoalveolar lavage cells

[1]  H. Liao,et al.  YOLOv7: Trainable Bag-of-Freebies Sets New State-of-the-Art for Real-Time Object Detectors , 2022, 2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

[2]  Jing Zhao,et al.  H-ProMed: Ultrasound image segmentation based on the evolutionary neural network and an improved principal curve , 2022, Pattern Recognit..

[3]  Clinton J. V. Campbell,et al.  Automated bone marrow cytology using deep learning to generate a histogram of cell types , 2022, Communications Medicine.

[4]  Zhenyu Ye,et al.  A-LugSeg: Automatic and explainability-guided multi-site lung detection in chest X-ray images , 2022, Expert Syst. Appl..

[5]  Celia Wai-yi Yip,et al.  Multi-Organ Omics-Based Prediction for Adaptive Radiation Therapy Eligibility in Nasopharyngeal Carcinoma Patients Undergoing Concurrent Chemoradiotherapy , 2022, Frontiers in Oncology.

[6]  Li Dong,et al.  Swin Transformer V2: Scaling Up Capacity and Resolution , 2021, 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

[7]  Kaifei Wang,et al.  Automated interpretation and analysis of bronchoalveolar lavage fluid , 2021, Int. J. Medical Informatics.

[8]  Jian-Bing Fan,et al.  Diagnosis of pulmonary nodules by DNA methylation analysis in bronchoalveolar lavage fluids , 2021, Clinical Epigenetics.

[9]  Ying Zhang,et al.  The role of exosomes from BALF in lung disease , 2021, Journal of cellular physiology.

[10]  Tao Mei,et al.  Contextual Transformer Networks for Visual Recognition , 2021, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[11]  Zeming Li,et al.  YOLOX: Exceeding YOLO Series in 2021 , 2021, ArXiv.

[12]  K. Tatsumi,et al.  Prognostic value of lymphocyte counts in bronchoalveolar lavage fluid in patients with acute respiratory failure: a retrospective cohort study , 2021, Journal of Intensive Care.

[13]  T. Tan,et al.  Focal and Efficient IOU Loss for Accurate Bounding Box Regression , 2021, Neurocomputing.

[14]  Ikram Ud Din,et al.  IoMT-Based Automated Detection and Classification of Leukemia Using Deep Learning , 2020, Journal of healthcare engineering.

[15]  A. Pan,et al.  Diagnostic Value of Metagenomic Next-Generation Sequencing for the Detection of Pathogens in Bronchoalveolar Lavage Fluid in Ventilator-Associated Pneumonia Patients , 2020, Frontiers in Microbiology.

[16]  E. Chan,et al.  Bronchoalveolar lavage as a diagnostic procedure: a review of known cellular and molecular findings in various lung diseases , 2020, Journal of thoracic disease.

[17]  K. Hosokawa,et al.  Prognosis of pathogen-proven acute respiratory distress syndrome diagnosed from a protocol that includes bronchoalveolar lavage: a retrospective observational study , 2020, Journal of Intensive Care.

[18]  Partha Pratim Banik,et al.  An Automatic Nucleus Segmentation and CNN Model based Classification Method of White Blood Cell , 2020, Expert Syst. Appl..

[19]  Santiago Alférez,et al.  A Deep Learning Approach for Segmentation of Red Blood Cell Images and Malaria Detection , 2020, Entropy.

[20]  W. Zuo,et al.  Enhancing Geometric Factors in Model Learning and Inference for Object Detection and Instance Segmentation , 2020, IEEE Transactions on Cybernetics.

[21]  C. Thompson,et al.  Airway Diagnostics: Bronchoalveolar Lavage, Tracheal Wash, and Pleural Fluid. , 2020, The Veterinary clinics of North America. Equine practice.

[22]  J. Loganathan,et al.  Role of Estrogen Receptors α and β in a Murine Model of Asthma: Exacerbated Airway Hyperresponsiveness and Remodeling in ERβ Knockout Mice , 2020, Frontiers in Pharmacology.

[23]  Chang Xu,et al.  GhostNet: More Features From Cheap Operations , 2019, 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

[24]  Liangjing Lu,et al.  Bronchoalveolar lavage fluid dilution in ICU patients: what we should know and what we should do , 2019, Critical Care.

[25]  Xiangyu Zhang,et al.  ShuffleNet V2: Practical Guidelines for Efficient CNN Architecture Design , 2018, ECCV.

[26]  Kenneth P Smith,et al.  Automated Interpretation of Blood Culture Gram Stains by Use of a Deep Convolutional Neural Network , 2017, Journal of Clinical Microbiology.

[27]  Dan Zecha,et al.  A closer look: Small object detection in faster R-CNN , 2017, 2017 IEEE International Conference on Multimedia and Expo (ICME).

[28]  Yan Song,et al.  Inception Single Shot MultiBox Detector for object detection , 2017, 2017 IEEE International Conference on Multimedia & Expo Workshops (ICMEW).

[29]  Lukasz Kaiser,et al.  Attention is All you Need , 2017, NIPS.

[30]  X. Saelens,et al.  Bronchoalveolar Lavage of Murine Lungs to Analyze Inflammatory Cell Infiltration. , 2017, Journal of visualized experiments : JoVE.

[31]  R. Takei,et al.  Impact of lymphocyte differential count > 15% in BALF on the mortality of patients with acute exacerbation of chronic fibrosing idiopathic interstitial pneumonia , 2017, BMC Pulmonary Medicine.

[32]  Wei Liu,et al.  SSD: Single Shot MultiBox Detector , 2015, ECCV.

[33]  Ali Farhadi,et al.  You Only Look Once: Unified, Real-Time Object Detection , 2015, 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[34]  Kaiming He,et al.  Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks , 2015, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[35]  Zhimin Chen,et al.  Effects of Bronchoalveolar Lavage on Refractory Mycoplasma pneumoniae Pneumonia , 2014, Respiratory Care.

[36]  S. Choi,et al.  Usefulness of Cellular Analysis of Bronchoalveolar Lavage Fluid for Predicting the Etiology of Pneumonia in Critically Ill Patients , 2014, PloS one.

[37]  G. Raghu,et al.  Bronchoalveolar lavage for the evaluation of interstitial lung disease: is it clinically useful? , 2011, European Respiratory Journal.

[38]  A. Bondi,et al.  Rapid on-site evaluation of transbronchial aspirates in the diagnosis of hilar and mediastinal adenopathy: a randomized trial. , 2011, Chest.

[39]  R. Nenna,et al.  Bronchoalveolar Lavage: Indications and Applications , 2010 .

[40]  F. Bonella,et al.  Bronchoalveolar lavage in other interstitial lung diseases. , 2007, Seminars in respiratory and critical care medicine.

[41]  Luc Van Gool,et al.  Efficient Non-Maximum Suppression , 2006, 18th International Conference on Pattern Recognition (ICPR'06).

[42]  H. Magnussen,et al.  Predictive value of BAL cell differentials in the diagnosis of interstitial lung diseases , 2004, European Respiratory Journal.

[43]  S. Hodge,et al.  Flow cytometric characterization of cell populations in bronchoalveolar lavage and bronchial brushings from patients with chronic obstructive pulmonary disease , 2004, Cytometry. Part B, Clinical cytometry.

[44]  A. Nicholson,et al.  Histopathologic subsets of fibrosing alveolitis in patients with systemic sclerosis and their relationship to outcome. , 2002, American journal of respiratory and critical care medicine.

[45]  W. Ma,et al.  Improved immnunophenotyping of lymphocytes in bronchoalveolar lavage fluid (BALF) by flow cytometry. , 2001, Clinica chimica acta; international journal of clinical chemistry.

[46]  H. Hoogsteden,et al.  Bronchoalveolar lavage in extrinsic allergic alveolitis: effect of time elapsed since antigen exposure. , 1993, The European respiratory journal.

[47]  Stephen Lin,et al.  Swin Transformer: Hierarchical Vision Transformer using Shifted Windows , 2021, 2021 IEEE/CVF International Conference on Computer Vision (ICCV).

[48]  K. Brown,et al.  Baseline BAL neutrophilia predicts early mortality in idiopathic pulmonary fibrosis. , 2008, Chest.