A Coordinate-Descent Primal-Dual Algorithm with Large Step Size and Possibly Nonseparable Functions

This paper introduces a randomized coordinate-descent version of the Vu--Condat algorithm. By coordinate descent, we mean that only a subset of the coordinates of the primal and dual iterates is u...

[1]  J. Warga Minimizing Certain Convex Functions , 1963 .

[2]  R. Glowinski,et al.  Sur l'approximation, par éléments finis d'ordre un, et la résolution, par pénalisation-dualité d'une classe de problèmes de Dirichlet non linéaires , 1975 .

[3]  B. Mercier,et al.  A dual algorithm for the solution of nonlinear variational problems via finite element approximation , 1976 .

[4]  D. Gabay Applications of the method of multipliers to variational inequalities , 1983 .

[5]  H. Robbins,et al.  A Convergence Theorem for Non Negative Almost Supermartingales and Some Applications , 1985 .

[6]  John N. Tsitsiklis,et al.  Parallel and distributed computation , 1989 .

[7]  Jorge Nocedal,et al.  Algorithm 778: L-BFGS-B: Fortran subroutines for large-scale bound-constrained optimization , 1997, TOMS.

[8]  P. Tseng Convergence of a Block Coordinate Descent Method for Nondifferentiable Minimization , 2001 .

[9]  Heinz H. Bauschke,et al.  Bregman Monotone Optimization Algorithms , 2003, SIAM J. Control. Optim..

[10]  Yiming Yang,et al.  RCV1: A New Benchmark Collection for Text Categorization Research , 2004, J. Mach. Learn. Res..

[11]  R. Tibshirani,et al.  PATHWISE COORDINATE OPTIMIZATION , 2007, 0708.1485.

[12]  Marc Teboulle,et al.  A Fast Iterative Shrinkage-Thresholding Algorithm for Linear Inverse Problems , 2009, SIAM J. Imaging Sci..

[13]  Paul Tseng,et al.  A coordinate gradient descent method for nonsmooth separable minimization , 2008, Math. Program..

[14]  Paul Tseng,et al.  A coordinate gradient descent method for linearly constrained smooth optimization and support vector machines training , 2010, Comput. Optim. Appl..

[15]  Isabelle Guyon,et al.  Design and analysis of the KDD cup 2009: fast scoring on a large orange customer database , 2009, SKDD.

[16]  Antonin Chambolle,et al.  A First-Order Primal-Dual Algorithm for Convex Problems with Applications to Imaging , 2011, Journal of Mathematical Imaging and Vision.

[17]  Massimo Fornasier,et al.  Theoretical Foundations and Numerical Methods for Sparse Recovery , 2010, Radon Series on Computational and Applied Mathematics.

[18]  Chih-Jen Lin,et al.  LIBSVM: A library for support vector machines , 2011, TIST.

[19]  Stephen P. Boyd,et al.  Distributed Optimization and Statistical Learning via the Alternating Direction Method of Multipliers , 2011, Found. Trends Mach. Learn..

[20]  P. L. Combettes,et al.  Primal-Dual Splitting Algorithm for Solving Inclusions with Mixtures of Composite, Lipschitzian, and Parallel-Sum Type Monotone Operators , 2011, Set-Valued and Variational Analysis.

[21]  Peter Richtárik,et al.  Efficient Serial and Parallel Coordinate Descent Methods for Huge-Scale Truss Topology Design , 2011, OR.

[22]  Dimitri P. Bertsekas,et al.  Incremental proximal methods for large scale convex optimization , 2011, Math. Program..

[23]  Yurii Nesterov,et al.  Efficiency of Coordinate Descent Methods on Huge-Scale Optimization Problems , 2012, SIAM J. Optim..

[24]  Bingsheng He,et al.  Convergence Analysis of Primal-Dual Algorithms for a Saddle-Point Problem: From Contraction Perspective , 2012, SIAM J. Imaging Sci..

[25]  Amir Beck,et al.  On the Convergence of Block Coordinate Descent Type Methods , 2013, SIAM J. Optim..

[26]  Shai Shalev-Shwartz,et al.  Stochastic dual coordinate ascent methods for regularized loss , 2012, J. Mach. Learn. Res..

[27]  Pascal Bianchi,et al.  Asynchronous distributed optimization using a randomized alternating direction method of multipliers , 2013, 52nd IEEE Conference on Decision and Control.

[28]  Laurent Condat,et al.  A Primal–Dual Splitting Method for Convex Optimization Involving Lipschitzian, Proximable and Linear Composite Terms , 2012, Journal of Optimization Theory and Applications.

[29]  Bang Công Vu,et al.  A splitting algorithm for dual monotone inclusions involving cocoercive operators , 2011, Advances in Computational Mathematics.

[30]  Ion Necoara,et al.  A random coordinate descent algorithm for optimization problems with composite objective function and linear coupled constraints , 2013, Comput. Optim. Appl..

[31]  Volkan Cevher,et al.  Convex Optimization for Big Data: Scalable, randomized, and parallel algorithms for big data analytics , 2014, IEEE Signal Processing Magazine.

[32]  Taiji Suzuki,et al.  Stochastic Dual Coordinate Ascent with Alternating Direction Method of Multipliers , 2014, ICML.

[33]  Gaël Varoquaux,et al.  Benchmarking solvers for TV-ℓ1 least-squares and logistic regression in brain imaging , 2014, 2014 International Workshop on Pattern Recognition in Neuroimaging.

[34]  V. Cevher,et al.  A Primal-Dual Algorithmic Framework for Constrained Convex Minimization , 2014, 1406.5403.

[35]  Pascal Bianchi,et al.  A stochastic coordinate descent primal-dual algorithm and applications , 2014, 2014 IEEE International Workshop on Machine Learning for Signal Processing (MLSP).

[36]  Peter Richtárik,et al.  Iteration complexity of randomized block-coordinate descent methods for minimizing a composite function , 2011, Mathematical Programming.

[37]  Lin Xiao,et al.  An Accelerated Proximal Coordinate Gradient Method , 2014, NIPS.

[38]  J. Pesquet,et al.  A Class of Randomized Primal-Dual Algorithms for Distributed Optimization , 2014, 1406.6404.

[39]  Yurii Nesterov,et al.  Subgradient methods for huge-scale optimization problems , 2013, Mathematical Programming.

[40]  Patrick L. Combettes,et al.  Stochastic Quasi-Fejér Block-Coordinate Fixed Point Iterations with Random Sweeping , 2014 .

[41]  Damek Davis,et al.  A Three-Operator Splitting Scheme and its Optimization Applications , 2015, 1504.01032.

[42]  Yuchen Zhang,et al.  Stochastic Primal-Dual Coordinate Method for Regularized Empirical Risk Minimization , 2014, ICML.

[43]  Peter Richtárik,et al.  Accelerated, Parallel, and Proximal Coordinate Descent , 2013, SIAM J. Optim..

[44]  A. Chambolle,et al.  On the convergence of the iterates of "FISTA" , 2015 .

[45]  A. Chambolle,et al.  On the Convergence of the Iterates of the “Fast Iterative Shrinkage/Thresholding Algorithm” , 2015, J. Optim. Theory Appl..

[46]  Julien Mairal,et al.  Incremental Majorization-Minimization Optimization with Application to Large-Scale Machine Learning , 2014, SIAM J. Optim..

[47]  Pascal Bianchi,et al.  Using big steps in coordinate descent primal-dual algorithms , 2016, 2016 IEEE 55th Conference on Decision and Control (CDC).

[48]  Antonin Chambolle,et al.  On the ergodic convergence rates of a first-order primal–dual algorithm , 2016, Math. Program..

[49]  Pascal Bianchi,et al.  A Coordinate Descent Primal-Dual Algorithm and Application to Distributed Asynchronous Optimization , 2014, IEEE Transactions on Automatic Control.

[50]  Peter Richtárik,et al.  Parallel coordinate descent methods for big data optimization , 2012, Mathematical Programming.

[51]  Zhi-Quan Luo,et al.  Iteration complexity analysis of block coordinate descent methods , 2013, Mathematical Programming.

[52]  Wotao Yin,et al.  Faster Convergence Rates of Relaxed Peaceman-Rachford and ADMM Under Regularity Assumptions , 2014, Math. Oper. Res..

[53]  Shuzhong Zhang,et al.  First-Order Algorithms for Convex Optimization with Nonseparable Objective and Coupled Constraints , 2016, Journal of the Operations Research Society of China.

[54]  Antonin Chambolle,et al.  Stochastic Primal-Dual Hybrid Gradient Algorithm with Arbitrary Sampling and Imaging Applications , 2017, SIAM J. Optim..

[55]  Yangyang Xu,et al.  Randomized Primal–Dual Proximal Block Coordinate Updates , 2016, Journal of the Operations Research Society of China.