Modeling carbon burial along the land to ocean aquatic continuum: Current status, challenges and perspectives

[1]  Michael J. Osland,et al.  Global dataset of soil organic carbon in tidal marshes , 2023, Scientific data.

[2]  I. Mazarrasa,et al.  Flaws in the methodologies for organic carbon analysis in seagrass blue carbon soils , 2023, Limnology and Oceanography: Methods.

[3]  M. Kirwan,et al.  Geomorphic and ecological constraints on the coastal carbon sink , 2023, Nature Reviews Earth & Environment.

[4]  Xiangming Xiao,et al.  Mapping global distribution of mangrove forests at 10-m resolution. , 2023, Science bulletin.

[5]  L. Ran,et al.  Inland Water Greenhouse Gas Budgets for RECCAP2: 1. State‐Of‐The‐Art of Global Scale Assessments , 2023, Global Biogeochemical Cycles.

[6]  B. Minasny,et al.  Seasonal Biotic Processes Vary the Carbon Turnover by Up To One Order of Magnitude in Wetlands , 2023, Global Biogeochemical Cycles.

[7]  C. Peng,et al.  Integrating terrestrial and aquatic ecosystems to constrain estimates of land-atmosphere carbon exchange , 2023, Nature Communications.

[8]  D. Lagomasino,et al.  Species Traits and Geomorphic Setting as Drivers of Global Soil Carbon Stocks in Seagrass Meadows , 2022, Global Biogeochemical Cycles.

[9]  H. Steinmuller,et al.  Refining the Global Estimate of Mangrove Carbon Burial Rates Using Sedimentary and Geomorphic Settings , 2022, Geophysical Research Letters.

[10]  B. McKee,et al.  Carbon accumulation rates are highest at young and expanding salt marsh edges , 2022, Communications Earth & Environment.

[11]  D. Robinson,et al.  GloSEM: High-resolution global estimates of present and future soil displacement in croplands by water erosion , 2022, Scientific data.

[12]  C. Renshaw,et al.  Rapid changes to global river suspended sediment flux by humans , 2022, Science.

[13]  B. Lehner,et al.  Global hydro-environmental lake characteristics at high spatial resolution , 2022, Scientific Data.

[14]  C. Solomon,et al.  Hydrologic Export of Soil Organic Carbon: Continental Variation and Implications , 2022, Global Biogeochemical Cycles.

[15]  Thomas A. Worthington,et al.  High-resolution mapping of losses and gains of Earth’s tidal wetlands , 2022, Science.

[16]  M. Rietkerk,et al.  Recovering wetland biogeomorphic feedbacks to restore the world’s biotic carbon hotspots , 2022, Science.

[17]  D. Medvigy,et al.  A Terrestrial‐Aquatic Model Reveals Cross‐Scale Interactions Regulate Lateral Dissolved Organic Carbon Transport From Terrestrial Ecosystems , 2022, Journal of Geophysical Research: Biogeosciences.

[18]  L. E. Bezerra,et al.  Blue Carbon Ecosystems in Brazil: Overview and an Urgent Call for Conservation and Restoration , 2022, Frontiers in Marine Science.

[19]  Y. Sheng,et al.  GeoDAR: georeferenced global dams and reservoirs dataset for bridging attributes and geolocations , 2022, Earth System Science Data.

[20]  Lesley B. Knoll,et al.  Temporal patterns in sediment, carbon, and nutrient burial in ponds associated with changing agricultural tillage , 2022, Biogeochemistry.

[21]  P. Ciais,et al.  The land-to-ocean loops of the global carbon cycle , 2022, Nature.

[22]  R. Hilton,et al.  Vegetal Undercurrents—Obscured Riverine Dynamics of Plant Debris , 2022, Journal of geophysical research. Biogeosciences.

[23]  Haicheng Zhang,et al.  Spatiotemporal patterns and drivers of terrestrial dissolved organic carbon (DOC) leaching into the European river network , 2022, Earth System Dynamics.

[24]  L. Read,et al.  GLOBathy, the global lakes bathymetry dataset , 2022, Scientific data.

[25]  T. DeVries,et al.  Quantifying the Carbon Export and Sequestration Pathways of the Ocean's Biological Carbon Pump , 2022, Global Biogeochemical Cycles.

[26]  D. Bonotto,et al.  The constant flux and constant sedimentation (CF:CS) 210Pb chronological method applied to determine sedimentation rates at Amazon River watershed, Brazil , 2022, Journal of South American Earth Sciences.

[27]  Shovik Deb,et al.  Soils and sediments of coastal ecology: A global carbon sink , 2021, Ocean & Coastal Management.

[28]  Hailong Sun,et al.  The ballast effect controls the settling of autochthonous organic carbon in three subtropical karst reservoirs. , 2021, The Science of the total environment.

[29]  C. Peng,et al.  Global patterns of particulate organic carbon export from land to the ocean , 2021, Ecohydrology.

[30]  J. Hall‐Spencer,et al.  The Role of Blue Carbon in Climate Change Mitigation and Carbon Stock Conservation , 2021, Frontiers in Climate.

[31]  P. Sabatier,et al.  A worldwide meta-analysis (1977–2020) of sediment core dating using fallout radionuclides including 137Cs and 210Pbxs , 2021, Earth System Science Data.

[32]  G. Heuvelink,et al.  SoilGrids 2.0: producing soil information for the globe with quantified spatial uncertainty , 2021, SOIL.

[33]  V. Bekiari,et al.  Application of a catalytic oxidation method for the simultaneous determination of total organic carbon and total nitrogen in marine sediments and soils , 2021, PloS one.

[34]  R. Marcé,et al.  Global carbon budget of reservoirs is overturned by the quantification of drawdown areas , 2021, Nature Geoscience.

[35]  N. Blair,et al.  Magnetic Fly Ash as a Chronological Marker in Post-Settlement Alluvial and Lacustrine Sediment: Examples from North Carolina and Illinois , 2021, Minerals.

[36]  Hong Xuan Do,et al.  Globally observed trends in mean and extreme river flow attributed to climate change , 2021, Science.

[37]  L. Tranvik,et al.  Organic Matter Degradation across Ecosystem Boundaries: The Need for a Unified Conceptualization. , 2020, Trends in ecology & evolution.

[38]  I. Bergier,et al.  Enhanced middle Holocene organic carbon burial in tropical floodplain lakes of the Pantanal (South America) , 2020, Journal of Paleolimnology.

[39]  C. Lovelock,et al.  Variable Impacts of Climate Change on Blue Carbon , 2020 .

[40]  M. Hansen,et al.  Mapping and sampling to characterize global inland water dynamics from 1999 to 2018 with full Landsat time-series , 2020 .

[41]  F. Roland,et al.  Global CO2 emissions from dry inland waters share common drivers across ecosystems , 2020, Nature Communications.

[42]  D. Murdiyarso,et al.  Organic carbon burial and sources in soils of coastal mudflat and mangrove ecosystems , 2020 .

[43]  C. Roelfsema,et al.  The global distribution of seagrass meadows , 2020, Environmental Research Letters.

[44]  P. Bousquet,et al.  Satellite‐Derived Global Surface Water Extent and Dynamics Over the Last 25 Years (GIEMS‐2) , 2020, Journal of Geophysical Research: Atmospheres.

[45]  J. Ni,et al.  River dam impacts on biogeochemical cycling , 2020, Nature Reviews Earth & Environment.

[46]  J. V. Klump,et al.  Estimates of the remineralization and burial of organic carbon in Lake Baikal sediments , 2020 .

[47]  Arnout van Soesbergen,et al.  Digital Commons @ Michigan Tech Digital Commons @ Michigan Tech GOODD, a global dataset of more than 38,000 georeferenced GOODD, a global dataset of more than 38,000 georeferenced dams. dams. , 2022 .

[48]  P. Salamon,et al.  GloFAS-ERA5 operational global river discharge reanalysis 1979–present , 2020, Earth System Science Data.

[49]  P. Ciais,et al.  Global trends in water and sediment fluxes of the world's large rivers. , 2020, Science bulletin.

[50]  M. Thieme,et al.  Global hydro-environmental sub-basin and river reach characteristics at high spatial resolution , 2019, Scientific Data.

[51]  S. Feakins,et al.  Sustained wood burial in the Bengal Fan over the last 19 My , 2019, Proceedings of the National Academy of Sciences.

[52]  Jakob J. Kolb,et al.  Earth system modeling with endogenous and dynamic human societies: the copan:CORE open World–Earth modeling framework , 2019, 1909.13697.

[53]  Dai Yamazaki,et al.  MERIT Hydro: A High‐Resolution Global Hydrography Map Based on Latest Topography Dataset , 2019, Water Resources Research.

[54]  E. Wohl,et al.  Floodplain dynamics in North American permafrost regions under a warming climate and implications for organic carbon stocks: A review and synthesis , 2019, Earth-Science Reviews.

[55]  A. Ducharne,et al.  ORCHIDEE MICT-LEAK (r5459), a global model for the production, transport, and transformation of dissolved organic carbon from Arctic permafrost regions – Part 1: Rationale, model description, and simulation protocol , 2019, Geoscientific Model Development.

[56]  R. Mendonça,et al.  Reduced Mineralization of Terrestrial OC in Anoxic Sediment Suggests Enhanced Burial Efficiency in Reservoirs Compared to Other Depositional Environments , 2019, Journal of geophysical research. Biogeosciences.

[57]  A. Borges,et al.  Ideas and perspectives: Carbon leaks from flooded land: do we need to replumb the inland water active pipe? , 2019, Biogeosciences.

[58]  J. Ghattas,et al.  Accounting for carbon and nitrogen interactions in the global terrestrial ecosystem model ORCHIDEE (trunk version, rev 4999): multi-scale evaluation of gross primary production , 2018, Geoscientific Model Development.

[59]  Mark John Costello,et al.  A modelled global distribution of the seagrass biome , 2018, Biological Conservation.

[60]  D. Maher,et al.  Terrestrial versus aquatic carbon fluxes in a subtropical agricultural floodplain over an annual cycle , 2018, Agricultural and Forest Meteorology.

[61]  R. Nicholls,et al.  Future response of global coastal wetlands to sea-level rise , 2018, Nature.

[62]  S. Dutta,et al.  Application of SWAT model for predicting soil erosion and sediment yield , 2018, Sustainable Water Resources Management.

[63]  E. S. Bakker,et al.  Warming enhances sedimentation and decomposition of organic carbon in shallow macrophyte‐dominated systems with zero net effect on carbon burial , 2018, Global change biology.

[64]  T. Pavelsky,et al.  Global extent of rivers and streams , 2018, Science.

[65]  Yangfan Li,et al.  Assessment of Blue Carbon Storage Loss in Coastal Wetlands under Rapid Reclamation , 2018, Sustainability.

[66]  R. Twilley,et al.  Coastal morphology explains global blue carbon distributions , 2018, Frontiers in Ecology and the Environment.

[67]  P. Raymond,et al.  Terrestrial carbon inputs to inland waters: A current synthesis of estimates and uncertainty , 2018 .

[68]  R. Twilley,et al.  Global controls on carbon storage in mangrove soils , 2018, Nature Climate Change.

[69]  Clare Duncan,et al.  A global map of mangrove forest soil carbon at 30 m spatial resolution , 2018 .

[70]  P. Macreadie,et al.  Variability and Vulnerability of Coastal ‘Blue Carbon’ Stocks: A Case Study from Southeast Australia , 2018, Ecosystems.

[71]  K. Oost,et al.  An assessment of the global impact of 21st century land use change on soil erosion , 2017, Nature Communications.

[72]  C. Verpoorter,et al.  Organic carbon burial in global lakes and reservoirs , 2017, Nature Communications.

[73]  P. Ciais,et al.  ORCHIDEE-SOM: Modeling soil organic carbon (SOC) and dissolved organic carbon (DOC) dynamics along vertical soil profiles in Europe , 2017 .

[74]  A. Ducharne,et al.  ORCHILEAK (revision 3875): a new model branch to simulate carbon transfers along the terrestrial–aquatic continuum of the Amazon basin , 2017 .

[75]  Lukas Gudmundsson,et al.  The Global Streamflow Indices and Metadata Archive (GSIM) – Part 1: The production of a daily streamflow archive and metadata , 2017 .

[76]  C. Peng,et al.  The carbon flux of global rivers: A re-evaluation of amount and spatial patterns , 2017 .

[77]  A. Wüest,et al.  Organic carbon mass accumulation rate regulates the flux of reduced substances from the sediments of deep lakes , 2017 .

[78]  C. Craft,et al.  Carbon sequestration and nutrient accumulation in floodplain and depressional wetlands , 2017 .

[79]  N. Anderson,et al.  The historical dependency of organic carbon burial efficiency , 2017 .

[80]  R. Unsworth,et al.  Seagrass meadows , 2017, Current Biology.

[81]  P. Régnier,et al.  Global perturbation of organic carbon cycling by river damming , 2017, Nature Communications.

[82]  Lauren V. Weatherdon,et al.  A global map of saltmarshes , 2017, Biodiversity data journal.

[83]  Axel Don,et al.  Soil organic carbon stocks are systematically overestimated by misuse of the parameters bulk density and rock fragment content , 2016 .

[84]  B. Lehner,et al.  Estimating the volume and age of water stored in global lakes using a geo-statistical approach , 2016, Nature Communications.

[85]  J. Pekel,et al.  High-resolution mapping of global surface water and its long-term changes , 2016, Nature.

[86]  Atul K. Jain,et al.  Global Carbon Budget 2016 , 2016 .

[87]  Mengru Wang,et al.  The MARINA model (Model to Assess River Inputs of Nutrients to seAs): Model description and results for China. , 2016, The Science of the total environment.

[88]  F. Roland,et al.  Organic carbon burial efficiency in a subtropical hydroelectric reservoir , 2016 .

[89]  F. Roland,et al.  High Primary Production Contrasts with Intense Carbon Emission in a Eutrophic Tropical Reservoir , 2016, Front. Microbiol..

[90]  P. Cappellen,et al.  Rivers in the Anthropocene: Global scale modifications of riverine nutrient fluxes by damming , 2016 .

[91]  O. Serrano,et al.  Location and Associated Carbon Storage of Erosional Escarpments of Seagrass Posidonia Mats , 2016, Front. Mar. Sci..

[92]  Zhengang Wang,et al.  Erosion, deposition and soil carbon: A review of process-level controls, experimental tools and models to address C cycling in dynamic landscapes , 2016 .

[93]  Ji-ming Ma,et al.  Different hydrodynamic conditions on the deposition of organic carbon in sediment of two reservoirs , 2016, Hydrobiologia.

[94]  H. Dürr,et al.  Global phosphorus retention by river damming , 2015, Proceedings of the National Academy of Sciences.

[95]  Zhenghong Tang,et al.  Using Fly Ash as a Marker to Quantify Culturally‐Accelerated Sediment Accumulation in Playa Wetlands , 2015 .

[96]  Adam J. Heathcote,et al.  Large increases in carbon burial in northern lakes during the Anthropocene , 2015, Nature Communications.

[97]  T. Dittmar,et al.  Uncoupled organic matter burial and quality in boreal lake sediments over the Holocene , 2015 .

[98]  W. Cramer,et al.  Climate change increases riverine carbon outgassing while export to the ocean remains uncertain , 2015 .

[99]  K. Verdin,et al.  Organic Carbon Burial in Lakes and Reservoirs of the Conterminous United States. , 2015, Environmental science & technology.

[100]  M. Allison,et al.  High rates of organic carbon burial in fjord sediments globally , 2015 .

[101]  D. Bonotto,et al.  (210)Pb and compositional data of sediments from Rondonian lakes, Madeira River basin, Brazil. , 2015, Applied radiation and isotopes : including data, instrumentation and methods for use in agriculture, industry and medicine.

[102]  H. Yamano,et al.  Geographic variability in organic carbon stock and accumulation rate in sediments of East and Southeast Asian seagrass meadows , 2015 .

[103]  H. Tian,et al.  Anthropogenic and climatic influences on carbon fluxes from eastern North America to the Atlantic Ocean: A process‐based modeling study , 2015 .

[104]  Bin Zhou,et al.  Organic carbon fractions and estimation of organic carbon storage in the lake sediments in Inner Mongolia Plateau, China , 2015, Environmental Earth Sciences.

[105]  S. Hamilton,et al.  Creation of a high spatio-temporal resolution global database of continuous mangrove forest cover for the 21st century (CGMFC-21) , 2014, 1412.0722.

[106]  Lesley B. Knoll,et al.  Burial rates and stoichiometry of sedimentary carbon, nitrogen and phosphorus in Midwestern US reservoirs , 2014 .

[107]  Matthew R. Hipsey,et al.  Sediment diagenesis models: Review of approaches, challenges and opportunities , 2014, Environ. Model. Softw..

[108]  C. Verpoorter,et al.  A global inventory of lakes based on high‐resolution satellite imagery , 2014 .

[109]  Shing Yip Lee,et al.  Updated estimates of carbon accumulation rates in coastal marsh sediments , 2014 .

[110]  E. Bernhardt,et al.  Floodplain biogeochemical mosaics: A multidimensional view of alluvial soils , 2014 .

[111]  P. Macreadie,et al.  Quantifying and modelling the carbon sequestration capacity of seagrass meadows--a critical assessment. , 2014, Marine pollution bulletin.

[112]  N. Anderson,et al.  Low organic carbon burial efficiency in arctic lake sediments , 2014 .

[113]  Y. Prairie,et al.  Linking organic carbon sedimentation, burial efficiency, and long‐term accumulation in boreal lakes , 2014 .

[114]  K. Oost,et al.  The fate of buried organic carbon in colluvial soils: a long-term perspective , 2014 .

[115]  P. Hanson,et al.  Quantifying lake allochthonous organic carbon budgets using a simple equilibrium model , 2014 .

[116]  B. Liu,et al.  Modern carbon burial in Lake Qinghai, China , 2013 .

[117]  P. Ciais,et al.  Global carbon dioxide emissions from inland waters , 2013, Nature.

[118]  H. Grossart,et al.  A regime shift from macrophyte to phytoplankton dominance enhances carbon burial in a shallow, eutrophic lake , 2013 .

[119]  Thomas Hoffmann,et al.  Carbon burial in soil sediments from Holocene agricultural erosion, Central Europe , 2013 .

[120]  B. Jørgensen,et al.  Quantifying the degradation of organic matter in marine sediments: A review and synthesis , 2013 .

[121]  Philippe Ciais,et al.  Anthropogenic perturbation of the carbon fluxes from land to ocean , 2013 .

[122]  W. Mitsch,et al.  The Carbon Balance of Two Riverine Wetlands Fifteen Years After Their Creation , 2013, Wetlands.

[123]  Bernhard Lehner,et al.  Global river hydrography and network routing: baseline data and new approaches to study the world's large river systems , 2013 .

[124]  C. Ahn,et al.  Hydrologic connectivity to streams increases nitrogen and phosphorus inputs and cycling in soils of created and natural floodplain wetlands. , 2013, Journal of environmental quality.

[125]  M. Kleber,et al.  Erosion, deposition, and the persistence of soil organic matter: mechanistic considerations and problems with terminology , 2013 .

[126]  D. Engstrom,et al.  Estimating modern carbon burial rates in lakes using a single sediment sample , 2013 .

[127]  S. Juutinen,et al.  Carbon evasion/accumulation ratio in boreal lakes is linked to nitrogen , 2013 .

[128]  B. Xue,et al.  Organic carbon burial in lake sediments in the middle and lower reaches of the Yangtze River Basin, China , 2013, Hydrobiologia.

[129]  Li Zhang,et al.  Wetlands, carbon, and climate change , 2013, Landscape Ecology.

[130]  J. Downing,et al.  Sediment organic carbon distribution in 4 small northern Missouri impoundments: implications for sampling and carbon sequestration , 2013 .

[131]  F. Pappenberger,et al.  Deriving global flood hazard maps of fluvial floods through a physical model cascade , 2012 .

[132]  Donald E. Canfield,et al.  Carbon mineralization and oxygen dynamics in sediments with deep oxygen penetration, Lake Superior , 2012 .

[133]  D. Donato,et al.  Estimating Global “Blue Carbon” Emissions from Conversion and Degradation of Vegetated Coastal Ecosystems , 2012, PloS one.

[134]  F. Roland,et al.  Climate change in Brazil: perspective on the biogeochemistry of inland waters. , 2012, Brazilian journal of biology = Revista brasleira de biologia.

[135]  N. Anderson,et al.  Carbon burial by shallow lakes on the Yangtze floodplain and its relevance to regional carbon sequestration , 2012 .

[136]  William J. Mitsch,et al.  Comparing carbon sequestration in temperate freshwater wetland communities , 2012 .

[137]  Wei-Jun Cai,et al.  Carbon sequestration in wetland dominated coastal systems—a global sink of rapidly diminishing magnitude , 2012 .

[138]  B. Wehrli,et al.  Extreme organic carbon burial fuels intense methane bubbling in a temperate reservoir , 2012 .

[139]  C. Prigent,et al.  Discharge simulation in the sub-basins of the Amazon using ORCHIDEE forced by new datasets , 2011 .

[140]  Carlos M. Duarte,et al.  A blueprint for blue carbon: toward an improved understanding of the role of vegetated coastal habitats in sequestering CO2 , 2011 .

[141]  P. Döll,et al.  High‐resolution mapping of the world's reservoirs and dams for sustainable river‐flow management , 2011 .

[142]  A. Wüest,et al.  Sediment accumulation and carbon, nitrogen, and phosphorus deposition in the large tropical reservoir Lake Kariba (Zambia/Zimbabwe) , 2011 .

[143]  M. Hinderer,et al.  Long‐term carbon burial in European lakes: Analysis and estimate , 2011 .

[144]  P. Kortelainen,et al.  Carbon pools and fluxes in a chain of five boreal lakes: A dry and wet year comparison , 2011 .

[145]  D. Alongi Carbon payments for mangrove conservation: ecosystem constraints and uncertainties of sequestration potential , 2011 .

[146]  Hans Middelkoop,et al.  Worldwide Typology of Nearshore Coastal Systems: Defining the Estuarine Filter of River Inputs to the Oceans , 2011 .

[147]  I. Ostrovsky,et al.  The burial efficiency of organic carbon in the sediments of Lake Kinneret , 2011, Aquatic Sciences.

[148]  Ralph Tiedemann,et al.  Environmental variability in Lake Naivasha, Kenya, over the last two centuries , 2011 .

[149]  S. Doney,et al.  Riverine coupling of biogeochemical cycles between land, oceans, and atmosphere , 2011 .

[150]  William M. Lewis,et al.  Global primary production of lakes: 19th Baldi Memorial Lecture , 2011 .

[151]  M. Schmid,et al.  Abrupt onset of carbonate deposition in Lake Kivu during the 1960s: response to recent environmental changes , 2010 .

[152]  Birgit Kleinschmit,et al.  Carbon stocks of soil and vegetation on Danubian floodplains , 2010 .

[153]  K. Fennel,et al.  Modeling the dynamics and export of dissolved organic matter in the Northeastern U.S. continental shelf , 2010 .

[154]  David Bastviken,et al.  Temperature-controlled organic carbon mineralization in lake sediments , 2010, Nature.

[155]  Carolien Kroeze,et al.  Global Nutrient Export from WaterSheds 2 (NEWS 2): Model development and implementation , 2010, Environ. Model. Softw..

[156]  Martin Wessels,et al.  Organic carbon burial efficiency in lake sediments controlled by oxygen exposure time and sediment source , 2009 .

[157]  John M. Melack,et al.  Lakes and reservoirs as regulators of carbon cycling and climate , 2009 .

[158]  C. Hupp,et al.  Retention of Riverine Sediment and Nutrient Loads by Coastal Plain Floodplains , 2009, Ecosystems.

[159]  S. Trumbore Radiocarbon and Soil Carbon Dynamics , 2009 .

[160]  John M. Melack,et al.  An organic carbon budget for an Amazon floodplain lake , 2009 .

[161]  Jan Polcher,et al.  Sensitivity of the West African hydrological cycle in ORCHIDEE to infiltration processes , 2008 .

[162]  Renato Campello Cordeiro,et al.  Acumulação de carbono em lagos amazônicos como indicador de eventos paleoclimáticos e antrópicos. , 2008 .

[163]  K. Verdin,et al.  New Global Hydrography Derived From Spaceborne Elevation Data , 2008 .

[164]  J. Downing,et al.  Sediment organic carbon burial in agriculturally eutrophic impoundments over the last century , 2008 .

[165]  R. Aalto,et al.  Spatial and temporal dynamics of sediment accumulation and exchange along Strickland River floodplains (Papua New Guinea) over decadal-to-centennial timescales , 2008 .

[166]  Wang Xiaoke,et al.  Primary evaluation of carbon sequestration potential of wetlands in China , 2008 .

[167]  P. Appleby Three decades of dating recent sediments by fallout radionuclides: a review , 2008 .

[168]  G. Hofman,et al.  Quantification of Organic Carbon in Soils: A Comparison of Methodologies and Assessment of the Carbon Content of Organic Matter , 2007 .

[169]  S. Alin,et al.  Carbon cycling in large lakes of the world: A synthesis of production, burial, and lake‐atmosphere exchange estimates , 2007 .

[170]  J. Downing,et al.  Plumbing the Global Carbon Cycle: Integrating Inland Waters into the Terrestrial Carbon Budget , 2007, Ecosystems.

[171]  Martyn N. Futter,et al.  Modeling the mechanisms that control in‐stream dissolved organic carbon dynamics in upland and forested catchments , 2007 .

[172]  William J. Mitsch,et al.  Sediment, carbon, and nutrient accumulation at two 10-year-old created riverine marshes , 2006, Wetlands.

[173]  S. Seitzinger,et al.  Global distribution and sources of dissolved inorganic nitrogen export to the coastal zone: Results from a spatially explicit, global model , 2005 .

[174]  John A. Harrison,et al.  Dissolved inorganic phosphorus export to the coastal zone: Results from a spatially explicit, global model , 2005 .

[175]  B. Delille,et al.  Budgeting sinks and sources of CO2 in the coastal ocean: Diversity of ecosystems counts , 2005 .

[176]  J. Syvitski,et al.  Impact of Humans on the Flux of Terrestrial Sediment to the Global Coastal Ocean , 2005, Science.

[177]  N. Blair,et al.  Sedimentation and carbon burial on the northern California continental shelf: the signatures of land-use change , 2005 .

[178]  Patrick Seyler,et al.  Carbon sedimentation at Lago Grande de Curuai, a floodplain lake in the low Amazon region: insights into sedimentation rates , 2004 .

[179]  Drew T. Shindell,et al.  Impacts of climate change on methane emissions from wetlands , 2004 .

[180]  E. López-Pamo,et al.  Loss on ignition: a qualitative or quantitative method for organic matter and carbonate mineral content in sediments? , 2004 .

[181]  P. Döll,et al.  Development and validation of a global database of lakes, reservoirs and wetlands , 2004 .

[182]  L. Tranvik,et al.  Role of lakes for organic carbon cycling in the boreal zone , 2004 .

[183]  D. Cahoon,et al.  Global carbon sequestration in tidal, saline wetland soils , 2003 .

[184]  J. Syvitski,et al.  Predicting the terrestrial flux of sediment to the global ocean: a planetary perspective , 2003 .

[185]  C. Vörösmarty,et al.  Anthropogenic sediment retention: major global impact from registered river impoundments , 2003 .

[186]  Ronald W. Muzzi,et al.  The design and performance of a sequencing sediment trap for lake research , 2002 .

[187]  Gregg Marland,et al.  Accounting for sequestered carbon: the question of permanence , 2001 .

[188]  Yoram Avnimelech,et al.  Water content, organic carbon and dry bulk density in flooded sediments , 2001 .

[189]  F. Behar,et al.  Rock-Eval 6 Technology: Performances and Developments , 2001 .

[190]  P. Masqué,et al.  Some considerations of the 210Pb constant rate of supply (CRS) dating model , 2000 .

[191]  R. Schneider,et al.  Transport of terrestrial organic carbon to the oceans by rivers: re-estimating flux- and burial rates , 2000 .

[192]  Eville Gorham,et al.  Magnitude and significance of carbon burial in lakes, reservoirs, and peatlands , 1998 .

[193]  Z. P. Wang,et al.  Carbon in tropical wetlands , 1997 .

[194]  Jules M. Blais,et al.  The influence of lake morphometry on sediment focusing , 1995 .

[195]  William J. Mitsch,et al.  Sediment deposition patterns in restored freshwater wetlands using sediment traps , 1994 .

[196]  K. Condie Chemical composition and evolution of the upper continental crust: Contrasting results from surface samples and shales , 1993 .

[197]  R. Twilley,et al.  Carbon sinks in mangroves and their implications to carbon budget of tropical coastal ecosystems , 1992 .

[198]  L. Håkanson,et al.  Measurement and prediction of sedimentation in small Swedish lakes , 1992, Hydrobiologia.

[199]  G. Nanson,et al.  A genetic classification of floodplains , 1992 .

[200]  J. Betts,et al.  The oxygen content of ocean bottom waters, the burial efficiency of organic carbon, and the regulation of atmospheric oxygen. , 1991, Global and planetary change.

[201]  K. Buesseler Do upper-ocean sediment traps provide an accurate record of particle flux? , 1991, Nature.

[202]  Ellery D. Ingall,et al.  Relation between sedimentation rate and burial of organic phosphorus and organic carbon in marine sediments , 1990 .

[203]  J. Middelburg A simple rate model for organic matter decomposition in marine sediments , 1989 .

[204]  J. Hedges,et al.  Processes controlling the organic carbon content of open ocean sediments , 1988 .

[205]  J. Toggweiler,et al.  A new model for the role of the oceans in determining atmospheric PCO2 , 1984, Nature.

[206]  R. Delaune,et al.  Carbon dioxide emission and carbon accumulation in coastal wetlands , 1983 .

[207]  J. Bloesch,et al.  A critical review of sedimentation trap technique , 1980, Schweizerische Zeitschrift für Hydrologie.

[208]  B. Hargrave,et al.  Assessment of sediment trap collection efficiency , 1979 .

[209]  Frank Oldfield,et al.  The calculation of lead-210 dates assuming a constant rate of supply of unsupported 210Pb to the sediment , 1978 .

[210]  S. Mozley,et al.  Radioactivity in sediments of the Great Lakes: Post-depositional redistribution by deposit-feeding organisms , 1977 .

[211]  Walter E. Dean,et al.  Determination of carbonate and organic matter in calcareous sediments and sedimentary rocks by loss on ignition; comparison with other methods , 1974 .

[212]  T. G. Tutin,et al.  Observations on Lake Sediments using Fallout 137Cs as a Tracer , 1973, Nature.

[213]  D. Alongi Impacts of Climate Change on Blue Carbon Stocks and Fluxes in Mangrove Forests , 2022 .

[214]  A. Tadesse,et al.  Prediction of sedimentation in reservoirs by combining catchment based model and stream based model with limited data , 2019, International Journal of Sediment Research.

[215]  G. Singer,et al.  Emissions from dry inland waters are a blind spot in the global carbon cycle , 2019, Earth-Science Reviews.

[216]  Wilford D. Gardner,et al.  Sediment trap dynamics and calibration : a laboratory evaluation , 2019 .

[217]  C. Hupp,et al.  Recent and historic sediment dynamics along Difficult Run, a suburban Virginia Piedmont stream , 2013 .

[218]  E. Mackay,et al.  Contribution of sediment focusing to heterogeneity of organic carbon and phosphorus burial in small lakes , 2013 .

[219]  Interactive comment on “Short Communication: Humans and the missing C-sink: erosion and burial of soil carbon through time” , 2013 .

[220]  Peter Cornillon,et al.  The Past, Present, and Future of the AVHRR Pathfinder SST Program , 2010 .

[221]  Xueqiang Lu A note on removal of the compaction effect for the 210Pb method. , 2007, Applied radiation and isotopes : including data, instrumentation and methods for use in agriculture, industry and medicine.

[222]  A. Klaus,et al.  DRY-BULK DENSITY : ITS USE AND DETERMINATION , 2006 .

[223]  D. Walling,et al.  River flood plains as carbon sinks , 2006 .

[224]  Peter G. Appleby,et al.  Chronostratigraphic Techniques in Recent Sediments , 2002 .

[225]  André F. Lotter,et al.  Loss on ignition as a method for estimating organic and carbonate content in sediments: reproducibility and comparability of results , 2001 .

[226]  M. Meybeck,et al.  Presenting the GEMS-GLORI, a compendium of world river discharge to the oceans , 1997 .

[227]  J. Bloesch Mechanisms, measurement and importance of sediment resuspension in lakes , 1995 .

[228]  C. N. Spencer,et al.  Low-background gamma counting: applications for210Pb dating of sediments , 1994 .

[229]  M. Räsänen,et al.  Holocene floodplain lake sediments in the Amazon: 14C dating and palaeoecological use , 1991 .

[230]  G. R. Foster,et al.  RUSLE: Revised universal soil loss equation , 1991 .

[231]  Kenneth Ray Olson,et al.  Fly Ash Use as a Time Marker in Sedimentation Studies , 1990 .

[232]  P. Anderson,et al.  Variations in Sediment Accumulation Rates and the Flux of Labile Organic Matter in Eastern Lake Superior Basins , 1989 .

[233]  F. El-Daoushy A summary on the lead-210 cycle in nature and related applications in Scandinavia , 1988 .

[234]  John R. Williams,et al.  Sediment yield prediction based on watershed hydrology. , 1977 .