On the Expressive Power of Polyadic Synchronisation in pi-calculus

We extend the π-calculus with polyadic synchronisation, a generalisation of the communication mechanism which allows channel names to be composite. We show that this operator embeds nicely in the theory of π-calculus, we suggest that it permits divergence-free encodings of distributed calculi, and we show that a limited form of polyadic synchronisation can be encoded weakly in π-calculus. After showing that matching cannot be derived in π-calculus, we compare the expressivity of polyadic synchronisation, mixed choice and matching. In particular we show that the degree of synchronisation of a language increases its expressive power by means of a separation result in the style of Palamidessi's result for mixed choice.

[1]  Robin Milner,et al.  A Calculus of Mobile Processes, II , 1992, Inf. Comput..

[2]  Satoshi Matsuoka,et al.  Object Technologies for Advanced Software , 1996, Lecture Notes in Computer Science.

[3]  Uwe Nestmann What is a "Good" Encoding of Guarded Choice? , 2000, Inf. Comput..

[4]  J. van Leeuwen,et al.  Theoretical Computer Science , 2003, Lecture Notes in Computer Science.

[5]  Uwe Nestmann On the Expressive Power of Joint Input , 1998, EXPRESS.

[6]  Tom Chothia,et al.  A Distributed Pi-Calculus with Local Areas of Communication , 2000, Electron. Notes Theor. Comput. Sci..

[7]  Davide Sangiorgi,et al.  Techniques of \ weak bisimulation up to " , 1992 .

[8]  Mario Tokoro,et al.  A Typing System for a Calculus of Objects , 1993, ISOTAS.

[9]  James Riely,et al.  Resource Access Control in Systems of Mobile Agents , 2002, Inf. Comput..

[10]  Frank S. de Boer,et al.  Embedding as a Tool for Language Comparison , 1994, Inf. Comput..

[11]  Jose Luis,et al.  Dynamic Binding of Names in Calculi for Mobile Processes , 2001 .

[12]  Roberto M. Amadio,et al.  The receptive distributed π-calculus , 1999, TOPL.

[13]  Marco Carbone,et al.  Process Algebra - Guided Design of Java Mobile Network Applications , 2001 .

[14]  Vasco T. Vasconcelos,et al.  A process-calculus approach to typed concurrent objects , 1995 .

[15]  G. Plotkin,et al.  Proof, language, and interaction: essays in honour of Robin Milner , 2000 .

[16]  Gian Luigi Ferrari Atomicity and Concurrency Control in Process Calculi , 1997, Fundam. Informaticae.

[17]  Mario Tokoro,et al.  On Asynchronous Communication Semantics , 1991, Object-Based Concurrent Computing.

[18]  Martin Berger,et al.  The Two-Phase Commitment Protocol in an Extended pi-Calculus , 2003, EXPRESS.

[19]  Robin Milner,et al.  A Calculus of Mobile Processes, II , 1992, Inf. Comput..

[20]  Davide Sangiorgi,et al.  The Pi-Calculus - a theory of mobile processes , 2001 .

[21]  Martín Abadi,et al.  A calculus for cryptographic protocols: the spi calculus , 1997, CCS '97.

[22]  Ernest J. H. Chang,et al.  An improved algorithm for decentralized extrema-finding in circular configurations of processes , 1979, CACM.

[23]  Gérard Boudol,et al.  Asynchrony and the Pi-calculus , 1992 .

[24]  Catuscia Palamidessi,et al.  Comparing the expressive power of the synchronous and the asynchronous π-calculus , 1998, POPL '97.

[25]  Simon L. Peyton Jones,et al.  Imperative functional programming , 1993, POPL '93.

[26]  Massimo Merro Locality and Polyadicity in Asynchronous Name-Passing Calculi , 2000, FoSSaCS.

[27]  James Riely,et al.  Resource Access Control in Systems of Mobile Agents , 2002, HLCL.

[28]  Catuscia Palamidessi,et al.  Comparing the expressive power of the synchronous and asynchronous $pi$-calculi , 2003, Mathematical Structures in Computer Science.

[29]  Benjamin C. Pierce,et al.  Decoding Choice Encodings , 1996, CONCUR.

[30]  Robin Milner,et al.  The Problem of "Weak Bisimulation up to" , 1992, CONCUR.

[31]  António Ravara,et al.  Typing Non-uniform Concurrent Objects , 2000, CONCUR.

[32]  Cédric Fournet,et al.  The reflexive CHAM and the join-calculus , 1996, POPL '96.

[33]  Cédric Fournet,et al.  The Join Calculus: A Language for Distributed Mobile Programming , 2000, APPSEM.

[34]  Tom Chothia,et al.  Encoding Distributed Areas and Local Communication into the pi-Calculus , 2001, EXPRESS.

[35]  Robin Milner,et al.  Communication and concurrency , 1989, PHI Series in computer science.

[36]  Mario Tokoro,et al.  An Object Calculus for Asynchronous Communication , 1991, ECOOP.

[37]  Davide Sangiorgi,et al.  Lazy functions and mobile processes , 2000, Proof, Language, and Interaction.

[38]  Ilaria Castellani,et al.  Concurrency and Atomicity , 1988, Theor. Comput. Sci..

[39]  Benjamin C. Pierce,et al.  Location independence for mobile agents , 1998 .

[40]  Massimo Merro On the Expressiveness of Chi, Update, and Fusion calculi , 1998, EXPRESS.

[41]  Luca Cardelli,et al.  Mobile Ambients , 1998, FoSSaCS.

[42]  Davide Sangiorgi,et al.  On asynchrony in name-passing calculi , 1998, Mathematical Structures in Computer Science.

[43]  Benjamin C. Pierce,et al.  Location-Independent Communication for Mobile Agents: A Two-Level Architecture , 1998, ICCL Workshop: Internet Programming Languages.