Optimization of High-Voltage Wide Bandgap Semiconductor Power Diodes

High-voltage (≥100 V) power diodes fabricated on wide bandgap semiconductors such as silicon carbide (SiC) and gallium nitride are generally rated for punch-through leakage current and employ a buffer layer sandwiched between the drift region and substrate. A simple and accurate method for the extraction of important diode design parameters is presented and validated using extensive static current-voltage and capacitance-voltage measurements of high-voltage (≥600 V) commercial SiC junction-barrier-controlled Schottky diodes from room temperature to 250 °C. It is shown that there is significant potential for further optimization of the performance of SiC power diodes.

[1]  Jim Esch Rugged Electrical Power Switching in Semiconductors: A Systems Approach , 2014, Proc. IEEE.

[2]  Takashi Shinohe,et al.  Parameters required to simulate electric characteristics of SiC devices for n-type 4H-SiC , 2004 .

[3]  R. Stratton,et al.  Field and thermionic-field emission in Schottky barriers , 1966 .

[4]  Krishna Shenai,et al.  Current transport mechanisms in atomically abrupt metal-semiconductor interfaces , 1988 .

[5]  Chenming Hu Optimum doping profile for minimum ohmic resistance and high-breakdown voltage , 1979, IEEE Transactions on Electron Devices.

[6]  B. J. Baliga,et al.  Trends in power semiconductor devices , 1996 .

[7]  Chenming Hu,et al.  Optimum design of power MOSFET's , 1984, IEEE Transactions on Electron Devices.

[8]  M. Lenzlinger,et al.  Fowler‐Nordheim Tunneling into Thermally Grown SiO2 , 1969 .

[9]  V.A.K. Temple Ideal FET doping profile , 1983, IEEE Transactions on Electron Devices.

[10]  J.D. Plummer,et al.  Modeling of the on-resistance of LDMOS, VDMOS, and VMOS power transistors , 1980, IEEE Transactions on Electron Devices.

[11]  Krishna Shenai,et al.  Novel refractory contact and interconnect metallizations for high-voltage and smart-power applications , 1990 .

[12]  P. Hower,et al.  Comparison of various source-gate geometries for power MOSFET's , 1981, IEEE Transactions on Electron Devices.

[13]  Y. Sugawara,et al.  High temperature static and dynamic characteristics of 3.7 kV high voltage 4H-SiC JBS , 2000, 12th International Symposium on Power Semiconductor Devices & ICs. Proceedings (Cat. No.00CH37094).

[14]  K. Shenai,et al.  Optimally scaled low-voltage vertical power MOSFETs for high-frequency power conversion , 1990 .

[15]  Balaji Raghothamachar,et al.  Volume production of high quality SiC substrates and epitaxial layers: Defect trends and device applications , 2012 .

[16]  E. Antončík,et al.  On the theory of surface states , 1961 .

[17]  Chenming Hu,et al.  Optimum doping profile of power MOSFET epitaxial layer , 1982 .

[18]  M.S. Adler,et al.  Power semiconductor switching devices—A comparison based on inductive switching , 1982, IEEE Transactions on Electron Devices.

[19]  Krishna Shenai,et al.  Optimized trench MOSFET technologies for power devices , 1992 .

[20]  K. Shenai,et al.  Field-enhanced tunneling and barrier lowering in Al—n+GaAs—nGaAs Schottky contacts grown by MBE , 1984, IEEE Electron Device Letters.

[21]  K. Ng,et al.  The Physics of Semiconductor Devices , 2019, Springer Proceedings in Physics.

[22]  T. Funaki,et al.  Evaluation of High Frequency Switching Capability of SiC Schottky Barrier Diode, Based on Junction Capacitance Model , 2008, IEEE Transactions on Power Electronics.

[23]  Krishna Shenai,et al.  Optimum semiconductors for high-power electronics , 1989 .

[24]  Z. Weinberg,et al.  On tunneling in metal‐oxide‐silicon structures , 1982 .