Facile fabrication of PBS/CNTs nanocomposite foam for electromagnetic interference shielding.

In order to reduce the pollutants of environment and electromagnetic waves, environment friendly polymer foams with outstanding electromagnetic interference shielding are imminently required. In this paper, a kind of electromagnetic shielding, biodegradable nanocomposite foam was fabricated by blending PBS with carbon nanotubes (CNTs) followed by foaming with supercritical CO2. The crystallization temperature and melting temperature of PBS/CNTs nanocomposites with 4 wt % of CNTs increased remarkably by 6 °C and 3.1 °C compared with that of pure PBS and a double crystal melting peak of various PBS samples appeared in DSC curves. Clearly, an increase of approximately 3 orders of magnitude was improved for storage modulus and near 9 orders of magnitude was enhanced for electrical properties with CNTs content from 0 to 4 wt %. Furthermore, CNTs endowed PBS nanocomposite foam with adjustable electromagnetic interference (EMI) shielding property, giving a specific EMI shielding effectiveness of 28.5 dB cm3/g. This study provided a promising methodology for preparing biodegradable, lightweight PBS/CNTs foam with outstanding electromagnetic shielding properties.