Local polyhedra and geometric graphs

We introduce a new realistic input model for geometric graphs and nonconvex polyhedra. A geometric graph G is local if (1) the longest edge at every vertex v is only a constant factor longer than the distance from v to its Euclidean nearest neighbor and (2) the lengths of the longest and shortest edges differ by at most a polynomial factor. A polyhedron is local if all its faces are simplices and its edges form a local geometric graph. We show that any boolean combination of any two local polyhedra in IRd, each with n vertices, can be computed in O(n log n) time, using a standard hierarchy of axis-aligned bounding boxes. Using results of de Berg, we also show that any local polyhedron in IRd has a binary space partition tree of size O(n logd-1 n). Finally, we describe efficient algorithms for computing Minkowski sums of local polyhedra in two and three dimensions.

[1]  Philip M. Hubbard,et al.  Approximating polyhedra with spheres for time-critical collision detection , 1996, TOGS.

[2]  Jeff Erickson,et al.  New lower bounds for Hopcroft's problem , 1995, SCG '95.

[3]  Dafna Talmor,et al.  Well-Spaced Points for Numerical Methods , 1997 .

[4]  Joachim Gudmundsson,et al.  Box-trees for collision checking in industrial installations , 2002, SCG '02.

[5]  S. Teng Points, spheres, and separators: a unified geometric approach to graph partitioning , 1992 .

[6]  Mark H. Overmars,et al.  Range Searching and Point Location among Fat Objects , 1996, J. Algorithms.

[7]  Jonathan Richard Shewchuk,et al.  Tetrahedral mesh generation by Delaunay refinement , 1998, SCG '98.

[8]  H. Edelsbrunner A new approach to rectangle intersections part I , 1983 .

[9]  Mark de Berg,et al.  Realistic input models for geometric algorithms , 1997, SCG '97.

[10]  Mark de Berg,et al.  Models and motion planning , 2002, Comput. Geom..

[11]  Jeff Erickson,et al.  Local polyhedra and geometric graphs , 2005, Comput. Geom..

[12]  K. Brown,et al.  Graduate Texts in Mathematics , 1982 .

[13]  Jim Ruppert,et al.  A Delaunay Refinement Algorithm for Quality 2-Dimensional Mesh Generation , 1995, J. Algorithms.

[14]  Xiang-Yang Li,et al.  Generating well-shaped Delaunay meshed in 3D , 2001, SODA '01.

[15]  Dinesh Manocha,et al.  OBBTree: a hierarchical structure for rapid interference detection , 1996, SIGGRAPH.

[16]  Henry Fuchs,et al.  On visible surface generation by a priori tree structures , 1980, SIGGRAPH '80.

[17]  Kenneth L. Clarkson,et al.  Applications of random sampling in computational geometry, II , 1988, SCG '88.

[18]  Michael Ben-Or,et al.  Lower bounds for algebraic computation trees , 1983, STOC.

[19]  John Amanatides,et al.  Merging BSP trees yields polyhedral set operations , 1990, SIGGRAPH.

[20]  Elmar Schömer,et al.  Efficient collision detection for moving polyhedra , 1995, SCG '95.

[21]  Bernard Chazelle,et al.  Convex Partitions of Polyhedra: A Lower Bound and Worst-Case Optimal Algorithm , 1984, SIAM J. Comput..

[22]  R. Schmacher,et al.  Study for Applying Computer-Generated Images to Visual Simulation: (510842009-001) , 1969 .

[23]  G. Ziegler Lectures on Polytopes , 1994 .

[24]  Michael T. Heath,et al.  Overlaying surface meshes, part I: algorithms , 2004, Int. J. Comput. Geom. Appl..

[25]  János Pach,et al.  On the boundary complexity of the union of fat triangles , 2000, Proceedings 41st Annual Symposium on Foundations of Computer Science.

[26]  Jeff Erickson,et al.  On the relative complexities of some geometric problems , 1995, CCCG.

[27]  J. Michael Steele,et al.  Lower Bounds for Algebraic Decision Trees , 1982, J. Algorithms.

[28]  A. Frank van der Stappen,et al.  Motion planning amidst fat obstacles , 1993 .

[29]  Mark de Berg,et al.  Linear Size Binary Space Partitions for Uncluttered Scenes , 2000, Algorithmica.

[30]  Hans-Peter Kriegel,et al.  Efficient processing of spatial joins using R-trees , 1993, SIGMOD Conference.

[31]  Jeff Erickson,et al.  Nice Point Sets Can Have Nasty Delaunay Triangulations , 2001, SCG '01.

[32]  Subhash Suri,et al.  Collision detection in aspect and scale bounded polyhedra , 1998, SODA '98.

[33]  Raimund Seidel,et al.  On the difficulty of triangulating three-dimensional Nonconvex Polyhedra , 1992, Discret. Comput. Geom..

[34]  John Canny,et al.  Impulse-Based Dynamic Simulation , 1995 .

[35]  Michael T. Heath,et al.  Mesh Association: Formulation and Algorithms , 1999, IMR.

[36]  Jean-Claude Latombe,et al.  Efficient maintenance and self-collision testing for Kinematic Chains , 2002, SCG '02.

[37]  Gary L. Miller,et al.  A Delaunay based numerical method for three dimensions: generation, formulation, and partition , 1995, STOC '95.

[38]  Michael T. Heath,et al.  Common‐refinement‐based data transfer between non‐matching meshes in multiphysics simulations , 2004 .

[39]  Antonin Guttman,et al.  R-trees: a dynamic index structure for spatial searching , 1984, SIGMOD '84.

[40]  Jesús A. De Loera,et al.  Finding minimal triangulations of convex 3-polytopes is NP-hard , 2000, SODA '00.

[41]  F. Frances Yao,et al.  Optimal binary space partitions for orthogonal objects , 1990, SODA '90.

[42]  Steven K. Feiner,et al.  Fast object-precision shadow generation for area light sources using BSP trees , 1992, I3D '92.

[43]  Bruce F. Naylor,et al.  Set operations on polyhedra using binary space partitioning trees , 1987, SIGGRAPH.

[44]  Leonidas J. Guibas,et al.  Collision detection for deforming necklaces , 2002, SCG '02.

[45]  Joseph S. B. Mitchell,et al.  Efficient Collision Detection Using Bounding Volume Hierarchies of k-DOPs , 1998, IEEE Trans. Vis. Comput. Graph..

[46]  F. Frances Yao,et al.  Efficient binary space partitions for hidden-surface removal and solid modeling , 1990, Discret. Comput. Geom..

[47]  T. M. Murali,et al.  Consistent solid and boundary representations from arbitrary polygonal data , 1997, SI3D.

[48]  Carlo H. Séquin,et al.  Visibility preprocessing for interactive walkthroughs , 1991, SIGGRAPH.

[49]  Leonidas J. Guibas,et al.  Algorithms for bichromatic line-segment problems and polyhedral terrains , 1994, Algorithmica.

[50]  Derick Wood,et al.  Counting and Reporting Intersections of d-Ranges , 1982, IEEE Transactions on Computers.

[51]  Mark de Berg,et al.  Computational geometry: algorithms and applications , 1997 .

[52]  Leonidas J. Guibas,et al.  BOXTREE: A Hierarchical Representation for Surfaces in 3D , 1996, Comput. Graph. Forum.

[53]  Herbert Edelsbrunner,et al.  Fast Software for Box Intersections , 2002, Int. J. Comput. Geom. Appl..

[54]  Steven K. Feiner,et al.  Near real-time shadow generation using BSP trees , 1989, SIGGRAPH '89.

[55]  János Pach,et al.  On the Boundary Complexity of the Union of Fat Triangles , 2002, SIAM J. Comput..

[56]  D. White,et al.  6th International Meshing Roundtable '97 , 1997 .

[57]  Subhash Suri,et al.  Analysis of a bounding box heuristic for object intersection , 1999, SODA '99.

[58]  Marco Pellegrini,et al.  Ray shooting on triangles in 3-space , 1993, Algorithmica.

[59]  Otfried Cheong,et al.  Range Searching in Low-Density Environments , 1996, Inf. Process. Lett..

[60]  Marc Levoy,et al.  A volumetric method for building complex models from range images , 1996, SIGGRAPH.