Multinomial logistic regression and product unit neural network models: Application of a new hybrid methodology for solving a classification problem in the livestock sector
暂无分享,去创建一个
César Hervás-Martínez | Mercedes Torres | Carlos García | Mercedes Torres | C. Hervás‐Martínez | Carlos García
[1] Shigeo Abe DrEng. Pattern Classification , 2001, Springer London.
[2] Ryszard S. Michalski,et al. Machine learning: an artificial intelligence approach volume III , 1990 .
[3] Sergio Javier Pérez Olivero,et al. Factores ambientales que influyen en la producción lechera en la raza ovina Manchega , 1994 .
[4] David E. Goldberg,et al. Genetic Algorithms and Walsh Functions: Part II, Deception and Its Analysis , 1989, Complex Syst..
[5] John R. Anderson,et al. MACHINE LEARNING An Artificial Intelligence Approach , 2009 .
[6] Cheng-Jian Lin,et al. A novel hybrid learning algorithm for parametric fuzzy CMAC networks and its classification applications , 2008, Expert Syst. Appl..
[7] J. Ross Quinlan,et al. C4.5: Programs for Machine Learning , 1992 .
[8] Yen-Jen Oyang,et al. Data classification with radial basis function networks based on a novel kernel density estimation algorithm , 2005, IEEE Transactions on Neural Networks.
[9] Andries Petrus Engelbrecht,et al. Global optimization algorithms for training product unit neural networks , 2000, Proceedings of the IEEE-INNS-ENNS International Joint Conference on Neural Networks. IJCNN 2000. Neural Computing: New Challenges and Perspectives for the New Millennium.
[10] Ian H. Witten,et al. Weka machine learning algorithms in java , 2000 .
[11] María Pilar Molina Pons. Composicion y factores de variacion de la leche de ovejas de raza manchega , 1988 .
[12] Ali A. Minai,et al. Back-propagation heuristics: a study of the extended delta-bar-delta algorithm , 1990, 1990 IJCNN International Joint Conference on Neural Networks.
[13] César Hervás-Martínez,et al. Evolutionary product unit based neural networks for regression , 2006, Neural Networks.
[14] Cliff T. Ragsdale,et al. Aggregating expert predictions in a networked environment , 2001, Comput. Oper. Res..
[15] Eric R. Ziegel,et al. Generalized Linear Models , 2002, Technometrics.
[16] Vasant Honavar,et al. Evolutionary Design of Neural Architectures -- A Preliminary Taxonomy and Guide to Literature , 1995 .
[17] David G. Stork,et al. Pattern Classification , 1973 .
[18] Heekuck Oh,et al. Neural Networks for Pattern Recognition , 1993, Adv. Comput..
[19] F. Glover,et al. Simple but powerful goal programming models for discriminant problems , 1981 .
[20] María Pilar Molina Pons,et al. Producción de leche: factores de variación , 1994 .
[21] Parag C. Pendharkar,et al. A threshold-varying artificial neural network approach for classification and its application to bankruptcy prediction problem , 2005, Comput. Oper. Res..
[22] J. Mark. Introduction to radial basis function networks , 1996 .
[23] D. Hosmer,et al. Applied Logistic Regression , 1991 .
[24] Leo Breiman,et al. Technical note: Some properties of splitting criteria , 2004, Machine Learning.
[25] J. Friedman,et al. Projection Pursuit Regression , 1981 .
[26] Michael Schmitt,et al. On the Complexity of Computing and Learning with Multiplicative Neural Networks , 2002, Neural Computation.
[27] Ester Bernadó-Mansilla,et al. Accuracy-Based Learning Classifier Systems: Models, Analysis and Applications to Classification Tasks , 2003, Evolutionary Computation.
[28] P. McCullagh,et al. Generalized Linear Models , 1992 .
[29] Roy Rada,et al. Expert systems and evolutionary computing for financial investing: A review , 2008, Expert Syst. Appl..
[30] Sunghoon Kwon,et al. Multiclass sparse logistic regression for classification of multiple cancer types using gene expression data , 2006, Comput. Stat. Data Anal..
[31] W. Vent,et al. Rechenberg, Ingo, Evolutionsstrategie — Optimierung technischer Systeme nach Prinzipien der biologischen Evolution. 170 S. mit 36 Abb. Frommann‐Holzboog‐Verlag. Stuttgart 1973. Broschiert , 1975 .
[32] Frederick Kaefer,et al. A neural network application to consumer classification to improve the timing of direct marketing activities , 2005, Comput. Oper. Res..
[33] David E. Goldberg,et al. Genetic Algorithms and Walsh Functions: Part I, A Gentle Introduction , 1989, Complex Syst..
[34] T. Minka. A comparison of numerical optimizers for logistic regression , 2004 .
[35] J. Ross Quinlan,et al. Induction of Decision Trees , 1986, Machine Learning.
[36] Abdulhamit Subasi,et al. Wavelet neural network classification of EEG signals by using AR model with MLE preprocessing , 2005, Neural Networks.
[37] Panos M. Pardalos,et al. MULTICRITERIA SORTING METHODOLOGY: APPLICATION TO FINANCIAL DECISION PROBLEMS , 2000, Parallel Algorithms Appl..
[38] Tian-Shyug Lee,et al. Mining the customer credit using classification and regression tree and multivariate adaptive regression splines , 2006, Comput. Stat. Data Anal..
[39] D. Cox,et al. The analysis of binary data , 1971 .
[40] Michael Y. Hu,et al. Two-Group Classification Using Neural Networks* , 1993 .
[41] J. Freidman,et al. Multivariate adaptive regression splines , 1991 .
[42] D. Cox,et al. Analysis of Binary Data (2nd ed.). , 1990 .
[43] A. C. Martínez-Estudillo,et al. Hybridization of evolutionary algorithms and local search by means of a clustering method , 2005, IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics).
[44] César Hervás-Martínez,et al. Logistic regression using covariates obtained by product-unit neural network models , 2007, Pattern Recognit..
[45] David E. Rumelhart,et al. Product Units: A Computationally Powerful and Biologically Plausible Extension to Backpropagation Networks , 1989, Neural Computation.
[46] Yuan-chin Ivan Chang,et al. Synergy of Logistic Regression and Support Vector Machine in Multiple-Class Classification , 2004, IDEAL.
[47] Bernard Widrow,et al. Layered neural nets for pattern recognition , 1988, IEEE Trans. Acoust. Speech Signal Process..
[48] Ingo Rechenberg,et al. Evolutionsstrategie : Optimierung technischer Systeme nach Prinzipien der biologischen Evolution , 1973 .
[49] César Hervás-Martínez,et al. Approximating the sheep milk production curve through the use of artificial neural networks and genetic algorithms , 2005, Comput. Oper. Res..
[50] R. Tibshirani,et al. Generalized Additive Models , 1991 .
[51] David E. Goldberg,et al. Genetic Algorithms in Search Optimization and Machine Learning , 1988 .
[52] C. J. Stone,et al. Polychotomous Regression , 1995 .
[53] John A. Nelder,et al. Generalized linear models. 2nd ed. , 1993 .
[54] Lucila Ohno-Machado,et al. Logistic regression and artificial neural network classification models: a methodology review , 2002, J. Biomed. Informatics.
[55] Maha N. Hajmeer,et al. Comparison of logistic regression and neural network-based classifiers for bacterial growth , 2003 .
[56] Eric R. Ziegel,et al. Analysis of Binary Data (2nd ed.) , 1991 .
[57] Carlos Buxadé Carbó. Ovino de leche: aspectos claves , 1997 .
[58] W. Vach,et al. On the misuses of artificial neural networks for prognostic and diagnostic classification in oncology. , 2000, Statistics in medicine.
[59] Randall S Sexton,et al. Employee turnover: a neural network solution , 2005, Comput. Oper. Res..
[60] Michael Georgiopoulos,et al. Coupling weight elimination with genetic algorithms to reduce network size and preserve generalization , 1997, Neurocomputing.
[61] Stanley Lemeshow,et al. Applied Logistic Regression, Second Edition , 1989 .
[62] Paz Lavín,et al. Producción de leche de oveja: la región de Castilla y León (España) como modelo , 2000 .
[63] Vasant Honavar,et al. Evolutionary Design of Neural Architectures , 1995 .
[64] Richard A. Johnson,et al. Applied Multivariate Statistical Analysis , 1983 .