Adaptive Organization of Tabular Data for Display

Tabular representations of information can be organized so that the subject distance between adjacent columns is low, bringing related materials together. In cases where data is available on all topics, the subject distance between table columns and rows can be formally shown to be minimized. A variety of Gray codes may be used for ordering tabular rows and columns. Subject features in the Gray code may be ordered so that the coding system used is one that has a lower inter-column subject distance than with many other codes. Methods by which user preferences may be incorporated are described. The system optionally may display unrequested columns of data that are related to requested data.

[1]  Thomas M. Thompson From error-correcting codes through sphere packings to simple groups , 1983 .

[2]  Nelly Litvak,et al.  The travel time in carousel systems under the nearest item heuristic , 2001, Journal of Applied Probability.

[3]  Roxann Roberson-Nay,et al.  Constructing knowledge. The role of graphs and tables in hard and soft psychology. , 2002, The American psychologist.

[4]  Gary Marchionini,et al.  E-Tables: Non-Specialist Use and Understanding of Statistical Data , 2001 .

[5]  Robert M. Losee Browsing Document Collections: Automatically Organizing Digital Libraries and Hypermedia using the Gray Code , 1997, Inf. Process. Manag..

[6]  Ronald E. Rice,et al.  Accessing and Browsing Information and Communication , 2001 .

[7]  A. Tversky,et al.  Judgment under Uncertainty: Heuristics and Biases , 1974, Science.

[8]  A. Acharya,et al.  Reflected Number Systems , 1992 .

[9]  Robert M. Losee,et al.  The Science of Information: Measurement and Applications , 1990 .

[10]  N. J. A. Sloane,et al.  Gray codes for reflection groups , 1989, Graphs Comb..

[11]  E. Gilbert Gray codes and paths on the N-cube , 1958 .

[12]  Bert R. Boyce,et al.  Measurement of Subject Scatter in the Superintendent of Documents Classification. , 1990 .

[13]  P. Schoemaker,et al.  The Quest for optimality , 1984 .

[14]  Robert M. Losee,et al.  Seven fundamental questions for the science of library classification , 1993 .

[15]  Gregory B. Newby,et al.  Cognitive space and information space , 2001, J. Assoc. Inf. Sci. Technol..

[16]  Richard W. Hamming,et al.  Coding and Information Theory , 2018, Feynman Lectures on Computation.

[17]  Robert M. Losee Optimal User-Centered Knowledge Organization and Classification Systems: Using Non-reflected Gray Codes , 2002, J. Digit. Inf..

[18]  Richard A. Harshman,et al.  Indexing by Latent Semantic Analysis , 1990, J. Am. Soc. Inf. Sci..

[19]  Jane Greenberg,et al.  Metadata and the world wide web , 2002 .

[20]  David Maxwell Chickering,et al.  Learning Bayesian Networks: The Combination of Knowledge and Statistical Data , 1994, Machine Learning.

[21]  Philip M. Morse ON BROWSING: THE USE OF SEARCH THEORY IN THE SEARCH FOR INFORMATION , 1970 .

[22]  Robert M. Losee,et al.  A Gray Code Based Ordering for Documents on Shelves: Classification for Browsing and Retrieval , 1992, J. Am. Soc. Inf. Sci..

[23]  Jerome N. Borowick Technical Communication and Its Applications , 1995 .

[24]  John R. Anderson,et al.  Tracing Eye Movement Protocols with Cognitive Process Models , 1998 .

[25]  Marcia J. Bates,et al.  What Is a Reference Book? A Theoretical and Empirical Analysis. , 1986 .

[26]  Rory A. Fisher,et al.  Theory of Statistical Estimation , 1925, Mathematical Proceedings of the Cambridge Philosophical Society.

[27]  Gary Marchionini,et al.  Information Seeking in Electronic Environments , 1995 .

[28]  Robert M. Losee The Relative Shelf Location of Circulated Books: A Study of Classification, Users, and Browsing. , 1993 .

[29]  Karen A. Schriver Dynamics in document design , 1998 .