THE RELATION BETWEEN GAS AND DUST IN THE TAURUS MOLECULAR CLOUD

We report a study of the relation between dust and gas over a 100 deg2 area in the Taurus molecular cloud. We compare the H2 column density derived from dust extinction with the CO column density derived from the 12CO and 13CO J = 1 → 0 lines. We derive the visual extinction from reddening determined from 2MASS data. The comparison is done at an angular size of 200″ corresponding to 0.14 pc at a distance of 140 pc. We find that the relation between visual extinction AV and N(CO) is linear between AV ≃ 3 and 10 mag in the region associated with the B213-L1495 filament. In other regions, the linear relation is flattened for AV≳ 4 mag. We find that the presence of temperature gradients in the molecular gas affects the determination of N(CO) by ∼30%–70% with the largest difference occurring at large column densities. Adding a correction for this effect and accounting for the observed relation between the column density of CO and CO2 ices and AV, we find a linear relationship between the column of carbon monoxide and dust for observed visual extinctions up to the maximum value in our data ≃23 mag. We have used these data to study a sample of dense cores in Taurus. Fitting an analytical column density profile to these cores we derive an average volume density of about 1.4 × 104 cm−3 and a CO depletion age of about 4.2 × 105 yr. At visual extinctions smaller than ∼3 mag, we find that the CO fractional abundance is reduced by up to two orders of magnitude. The data show a large scatter suggesting a range of physical conditions of the gas. We estimate the H2 mass of Taurus to be about 1.5 × 104 M☉, independently derived from the AV and N(CO) maps. We derive a CO integrated intensity to H2 conversion factor of about 2.1 × 1020 cm−2 (K km s−1)−1, which applies even in the region where the [CO]/[H2] ratio is reduced by up to two orders of magnitude. The distribution of column densities in our Taurus maps resembles a log-normal function but shows tails at large and low column densities. The length scale at which the high column density tail starts to be noticeable is about 0.4 pc.

[1]  D. Whittet,et al.  Dust in the Galactic Environment , 2018 .

[2]  T. Henning,et al.  Probing the evolution of molecular cloud structure: From quiescence to birth , 2009, 0911.5648.

[3]  D. Padgett,et al.  EVIDENCE FOR DUST EVOLUTION WITHIN THE TAURUS COMPLEX FROM SPITZER IMAGES , 2009, 0906.5025.

[4]  E. Dishoeck,et al.  The photodissociation and chemistry of CO isotopologues: applications to interstellar clouds and circumstellar disks , 2009, 0906.3699.

[5]  Wolf B. Dapp,et al.  An analytic column density profile to fit prestellar cores , 2009, 0902.1779.

[6]  Coleman Krawczyk,et al.  RE-EXAMINING LARSON'S SCALING RELATIONSHIPS IN GALACTIC MOLECULAR CLOUDS , 2008, 0809.1397.

[7]  N. Abel,et al.  Ultraviolet Survey of CO and H2 in Diffuse Molecular Clouds: The Reflection of Two Photochemistry Regimes in Abundance Relationships , 2008, 0807.0940.

[8]  A. Goodman,et al.  THE “TRUE” COLUMN DENSITY DISTRIBUTION IN STAR-FORMING MOLECULAR CLOUDS , 2008, 0806.3441.

[9]  C. Kramer,et al.  Molecular line mapping of the giant molecular cloud associated with RCW 106 - II. Column density and dynamical state of the clumps , 2008, 0802.2298.

[10]  Gopal Narayanan,et al.  Large-Scale Structure of the Molecular Gas in Taurus Revealed by High Linear Dynamic Range Spectral Line Mapping , 2008, 0802.2206.

[11]  J. A. Ives,et al.  A Catalog of Background Stars Reddened by Dust in the Taurus Dark Clouds , 2008, 0801.4050.

[12]  Gopal Narayanan,et al.  The Five College Radio Astronomy Observatory CO Mapping Survey of the Taurus Molecular Cloud , 2007, 0802.2556.

[13]  H. Liszt Formation, fractionation and excitation of carbon monoxide in diffuse clouds , 2007, 0710.2237.

[14]  E. Bergin,et al.  Cold Dark Clouds: The Initial Conditions for Star Formation , 2007, 0705.3765.

[15]  J. Black,et al.  A computer program for fast non-LTE analysis of interstellar line spectra With diagnostic plots to interpret observed line intensity ratios , 2007, 0704.0155.

[16]  E. Bergin,et al.  The Abundance of Carbon Dioxide Ice in the Quiescent Intracloud Medium , 2007 .

[17]  E. Burgh,et al.  Direct Measurement of the Ratio of Carbon Monoxide to Molecular Hydrogen in the Diffuse Interstellar Medium , 2006, astro-ph/0611853.

[18]  R. Indebetouw,et al.  A Survey for New Members of Taurus with the Spitzer Space Telescope , 2006, astro-ph/0608548.

[19]  F. Bensch Neutral carbon and CO emission in the core and the halo of dark cloud Barnard 5 , 2006 .

[20]  S. Schlemmer,et al.  Desorption rates and sticking coefficients for CO and N2 interstellar ices , 2006, astro-ph/0601082.

[21]  K. Lehtinen,et al.  The ratio of N(C$\mathsf{^{18}}$O) and A$\mathsf{_{V}}$ in Chamaeleon I and III-B - Using 2MASS and SEST , 2005, astro-ph/0510342.

[22]  T. Umemoto,et al.  Erratum: Atlas and Catalog of Dark Clouds Based on Digitized Sky Survey I , 2005 .

[23]  Isabelle A. Grenier,et al.  Unveiling Extensive Clouds of Dark Gas in the Solar Neighborhood , 2005, Science.

[24]  J. Black,et al.  An atomic and molecular database for analysis of submillimetre line observations , 2004, astro-ph/0411110.

[25]  Michael L. Norman,et al.  The Formation of Self-Gravitating Cores in Turbulent Magnetized Clouds , 2003, astro-ph/0312622.

[26]  Paule Sonnentrucker,et al.  Abundances and Physical Conditions in the Interstellar Gas toward HD 185418 , 2003 .

[27]  B. Draine INTERSTELLAR DUST GRAINS , 2003, astro-ph/0304489.

[28]  W. Langer,et al.  Structure Function Scaling of a 2MASS Extinction Map of Taurus , 2002, astro-ph/0208217.

[29]  S. Federman,et al.  High-Resolution Measurements of Intersystem Bands of Carbon Monoxide toward X Persei , 2002, astro-ph/0205082.

[30]  H Germany,et al.  Systematic Molecular Differentiation in Starless Cores , 2001, astro-ph/0112487.

[31]  M. Lombardi,et al.  Mapping the interstellar dust with near-infrared observations: An optimized multi-band technique , 2001, astro-ph/0109135.

[32]  V. Pirronello,et al.  Formation of Carbon Dioxide by Surface Reactions on Ices in the Interstellar Medium , 2001 .

[33]  E. Herbst,et al.  New models of interstellar gas–grain chemistry – III. Solid CO2 , 2001 .

[34]  E. Vázquez-Semadeni,et al.  The Probability Distribution Function of Column Density in Molecular Clouds , 2001, astro-ph/0103199.

[35]  J. Weingartner,et al.  Dust Grain-Size Distributions and Extinction in the Milky Way, Large Magellanic Cloud, and Small Magellanic Cloud , 2001 .

[36]  P. Gerakines,et al.  Interstellar Extinction and Polarization in the Taurus Dark Clouds: The Optical Properties of Dust near the Diffuse/Dense Cloud Interface , 2001 .

[37]  J. Alves,et al.  Internal structure of a cold dark molecular cloud inferred from the extinction of background starlight , 2001, Nature.

[38]  P. Goldsmith Molecular Depletion and Thermal Balance in Dark Cloud Cores , 2000 .

[39]  D. Hartmann,et al.  The Milky Way in Molecular Clouds: A New Complete CO Survey , 2000, astro-ph/0009217.

[40]  James M. Stone,et al.  Density, Velocity, and Magnetic Field Structure in Turbulent Molecular Cloud Models , 2000, astro-ph/0008454.

[41]  J. Weingartner,et al.  Dust Grain Size Distributions and Extinction in the Milky Way, LMC, and SMC , 2000, astro-ph/0008146.

[42]  L. Mundy,et al.  Tracing the Mass during Low-Mass Star Formation. II. Modeling the Submillimeter Emission from Preprotostellar Cores , 2000, astro-ph/0006183.

[43]  R. Klessen One-Point Probability Distribution Functions of Supersonic Turbulent Flows in Self-gravitating Media , 2000, astro-ph/0001379.

[44]  P. Caselli,et al.  CO Depletion in the Starless Cloud Core L1544 , 1999 .

[45]  T. Wilson Isotopes in the interstellar medium and circumstellar envelopes , 1999 .

[46]  I. Bray,et al.  PHOTOIONIZATION WITH EXCITATION AND DOUBLE PHOTOIONIZATION OF THE HELIUM ISOELECTRONIC SEQUENCE , 1998 .

[47]  J. Alves,et al.  Correlation between Gas and Dust in Molecular Clouds: L977 , 1998, astro-ph/9809027.

[48]  T. Passot,et al.  Density probability distribution in one-dimensional polytropic gas dynamics , 1998, physics/9802019.

[49]  J. Scalo,et al.  On the Probability Density Function of Galactic Gas. I. Numerical Simulations and the Significance of the Polytropic Index , 1997, astro-ph/9710075.

[50]  E. Bergin,et al.  Chemical Evolution in Preprotostellar and Protostellar Cores , 1997 .

[51]  A. Kawamura,et al.  A C 18O Survey of Dense Cloud Cores in Taurus: Core Properties , 1996 .

[52]  T. Kerr,et al.  High-Resolution Studies of Solid CO in the Taurus Dark Cloud: Characterizing the Ices in Quiescent Clouds , 1995 .

[53]  D. Goorvitch Infrared CO line for the X 1 Sigma(+) state , 1994 .

[54]  Elizabeth A. Lada,et al.  Dust Extinction and Molecular Gas in the Dark Cloud IC 5146 , 1994 .

[55]  R. Wilson,et al.  Dust and gas emission in Barnard 5 , 1989 .

[56]  J. Black,et al.  The photodissociation and chemistry of interstellar CO , 1988 .

[57]  Philip R. Maloney,et al.  I(CO)/N(H2) conversions and molecular gas abundances in spiral and irregular galaxies , 1988 .

[58]  R. Wilson,et al.  The relationship between carbon monoxide abundance and visual extinction in interstellar clouds. , 1982 .

[59]  Edward J. Shaya,et al.  The Abundance of CO in Diffuse Interstellar Clouds , 1979 .

[60]  B. Savage,et al.  A survey of interstellar H I from L-alpha absorption measurements. II , 1978 .

[61]  B. Draine Photoelectric heating of interstellar gas , 1978 .

[62]  Eric Herbst,et al.  The formation and depletion of molecules in dense interstellar clouds , 1973 .

[63]  P. Solomon,et al.  The formation of diatomic molecules in interstellar clouds. , 1972 .

[64]  Ivan R. King,et al.  The structure of star clusters. I. an empirical density law , 1962 .

[65]  F. Bensch,et al.  Methods and constraints for the correction of the error beam pick-up in single dish radio observations , 2001 .

[66]  P. Padoan,et al.  Interstellar Turbulence: The Density PDFs of Supersonic Random Flows , 1999 .

[67]  R. Balian,et al.  Atomic and molecular physics and interstellar matter , 1975 .