Photoresponsive and Gas Sensing Field-Effect Transistors based on Multilayer WS2 Nanoflakes

The photoelectrical properties of multilayer WS2 nanoflakes including field-effect, photosensitive and gas sensing are comprehensively and systematically studied. The transistors perform an n-type behavior with electron mobility of 12 cm2/Vs and exhibit high photosensitive characteristics with response time (τ) of <20 ms, photo-responsivity (Rλ) of 5.7 A/W and external quantum efficiency (EQE) of 1118%. In addition, charge transfer can appear between the multilayer WS2 nanoflakes and the physical-adsorbed gas molecules, greatly influencing the photoelectrical properties of our devices. The ethanol and NH3 molecules can serve as electron donors to enhance the Rλ and EQE significantly. Under the NH3 atmosphere, the maximum Rλ and EQE can even reach 884 A/W and 1.7 × 105%, respectively. This work demonstrates that multilayer WS2 nanoflakes possess important potential for applications in field-effect transistors, highly sensitive photodetectors, and gas sensors, and it will open new way to develop two-dimensional (2D) WS2-based optoelectronics.

[1]  Lain-Jong Li,et al.  High‐Gain Phototransistors Based on a CVD MoS2 Monolayer , 2013, Advanced materials.

[2]  A. Radenović,et al.  Single-layer MoS2 transistors. , 2011, Nature nanotechnology.

[3]  Hua Zhang,et al.  Fabrication of single- and multilayer MoS2 film-based field-effect transistors for sensing NO at room temperature. , 2012, Small.

[4]  Jean-Christophe Charlier,et al.  Identification of individual and few layers of WS2 using Raman Spectroscopy , 2013, Scientific Reports.

[5]  F. M. Peeters,et al.  Adsorption of H 2 O , N H 3 , CO, N O 2 , and NO on graphene: A first-principles study , 2007, 0710.1757.

[6]  Bin Liu,et al.  Sensing behavior of atomically thin-layered MoS2 transistors. , 2013, ACS nano.

[7]  F. Schwierz Graphene transistors. , 2010, Nature nanotechnology.

[8]  A. K. Sood,et al.  Graphene: The New Two‐Dimensional Nanomaterial , 2009 .

[9]  Zhiyong Zhang,et al.  High-performance photodetectors for visible and near-infrared lights based on individual WS2 nanotubes , 2012 .

[10]  Hua Zhang,et al.  Single-layer MoS2 phototransistors. , 2012, ACS nano.

[11]  Shengli Chang,et al.  Adsorption of gas molecules on monolayer MoS2 and effect of applied electric field , 2013, Nanoscale Research Letters.

[12]  F. Xia,et al.  Graphene photodetectors for high-speed optical communications , 2010, 1009.4465.

[13]  D. Jena,et al.  Effect of high- κ gate dielectrics on charge transport in graphene-based field effect transistors , 2010 .

[14]  A. Javey,et al.  High-performance single layered WSe₂ p-FETs with chemically doped contacts. , 2012, Nano letters.

[15]  Qiyuan He,et al.  Fabrication of flexible MoS2 thin-film transistor arrays for practical gas-sensing applications. , 2012, Small.

[16]  Kinam Kim,et al.  Gated three-terminal device architecture to eliminate persistent photoconductivity in oxide semiconductor photosensor arrays. , 2012, Nature materials.

[17]  Thomas Heine,et al.  Influence of quantum confinement on the electronic structure of the transition metal sulfide T S 2 , 2011, 1104.3670.

[18]  Andre K. Geim,et al.  The rise of graphene. , 2007, Nature materials.

[19]  Andre K. Geim,et al.  Two-dimensional atomic crystals. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[20]  G. Frey,et al.  Optical Properties of MS_2 (M = Mo, W) Inorganic Fullerenelike and Nanotube Material Optical Absorption and Resonance Raman Measurements , 1998 .

[21]  R. Fivaz,et al.  Mobility of Charge Carriers in Semiconducting Layer Structures , 1967 .

[22]  J. Seiber Status and Prospects , 2005 .

[23]  F. Xia,et al.  Ultrafast graphene photodetector , 2009, CLEO/QELS: 2010 Laser Science to Photonic Applications.

[24]  J. Grossman,et al.  Broad-range modulation of light emission in two-dimensional semiconductors by molecular physisorption gating. , 2013, Nano letters.

[25]  Andras Kis,et al.  Ultrasensitive photodetectors based on monolayer MoS2. , 2013, Nature nanotechnology.

[26]  T. W. Halstead,et al.  Status and Prospects , 1984 .

[27]  Kai Xiao,et al.  Highly responsive ultrathin GaS nanosheet photodetectors on rigid and flexible substrates. , 2013, Nano letters.

[28]  S. V. Morozov,et al.  Dirac cones reshaped by interaction effects in suspended graphene , 2011 .

[29]  Bin Wang,et al.  Probing charge scattering mechanisms in suspended graphene by varying its dielectric environment , 2012, Nature Communications.

[30]  Somuri V. Prasad,et al.  Tribology of tungsten disulfide–nanocrystalline zinc oxide adaptive lubricant films from ambient to 500°C , 2000 .

[31]  Marcio C. Schneider,et al.  Mosfet Modeling for Circuit Analysis and Design , 2007 .

[32]  Ron Dagani,et al.  CARBON-BASED ELECTRONICS , 1999 .

[33]  Qingxin Tang,et al.  Low Threshold Voltage Transistors Based on Individual Single‐Crystalline Submicrometer‐Sized Ribbons of Copper Phthalocyanine , 2006 .

[34]  R. Zeis,et al.  High-mobility field-effect transistors based on transition metal dichalcogenides , 2004 .

[35]  Ruitao Lv,et al.  Controlled synthesis and transfer of large-area WS2 sheets: from single layer to few layers. , 2013, ACS nano.

[36]  K. Novoselov,et al.  Detection of individual gas molecules adsorbed on graphene. , 2006, Nature materials.

[37]  SUPARNA DUTTASINHA,et al.  Graphene: Status and Prospects , 2009, Science.

[38]  N. Peres,et al.  Fine Structure Constant Defines Visual Transparency of Graphene , 2008, Science.

[39]  W. A. Brainard The thermal stability and friction of the disulfides, diselenides, and ditellurides of molybdenum and tungsten in vacuum , 1969 .

[40]  D. Jena,et al.  Enhancement of carrier mobility in semiconductor nanostructures by dielectric engineering. , 2007, Physical review letters.

[41]  Hongxiang Li,et al.  High-performance air-stable n-type transistors with an asymmetrical device configuration based on organic single-crystalline submicrometer/nanometer ribbons. , 2006, Journal of the American Chemical Society.

[42]  Jr-Hau He,et al.  Few-Layer MoS2 with high broadband Photogain and fast optical switching for use in harsh environments. , 2013, ACS nano.

[43]  Lifeng Wang,et al.  Synthesis of few-layer GaSe nanosheets for high performance photodetectors. , 2012, ACS nano.

[44]  Michael S. Fuhrer,et al.  Realization and electrical characterization of ultrathin crystals of layered transition-metal dichalcogenides , 2007 .

[45]  M. Asif Khan,et al.  Schottky barrier photodetector based on Mg‐doped p‐type GaN films , 1993 .

[46]  Soo Doo Chae,et al.  Transistors with chemically synthesized layered semiconductor WS2 exhibiting 105 room temperature modulation and ambipolar behavior , 2012, 1204.0474.

[47]  J. Wilson,et al.  The transition metal dichalcogenides discussion and interpretation of the observed optical, electrical and structural properties , 1969 .

[48]  Wei Liu,et al.  Role of metal contacts in designing high-performance monolayer n-type WSe2 field effect transistors. , 2013, Nano letters.

[49]  P M Campbell,et al.  Chemical vapor sensing with monolayer MoS2. , 2013, Nano letters.

[50]  A. K. Mohanty,et al.  A First Principles Study , 2012 .

[51]  Jing Guo,et al.  Performance Limits of Monolayer Transition Metal Dichalcogenide Transistors , 2011, IEEE Transactions on Electron Devices.

[52]  Ulrich Amsel,et al.  Mosfet Modeling For Circuit Analysis And Design , 2016 .

[53]  S. Sze,et al.  Physics of Semiconductor Devices: Sze/Physics , 2006 .

[54]  Yuyuan Tian,et al.  Dielectric screening enhanced performance in graphene FET. , 2009, Nano letters.

[55]  G. Shi,et al.  Graphene-based gas sensors , 2013 .

[56]  G. Konstantatos,et al.  Hybrid graphene-quantum dot phototransistors with ultrahigh gain. , 2011, Nature nanotechnology.

[57]  B. Liu,et al.  GaS and GaSe Ultrathin Layer Transistors , 2012, Advanced materials.

[58]  薛丁江 Anisotropic Photoresponse Properties of Single Micrometer-Sized GeSe Nanosheet , 2012 .

[59]  M. Dresselhaus,et al.  Synthesis and transfer of single-layer transition metal disulfides on diverse surfaces. , 2013, Nano letters.

[60]  Keliang He,et al.  Control of valley polarization in monolayer MoS2 by optical helicity. , 2012, Nature nanotechnology.