Maxima in hypercubes

We derive a Berry-Esseen bound, essentially of the order of the square of the standard deviation, for the number of maxima in random samples from (0, 1)d. The bound is, although not optimal, the first of its kind for the number of maxima in dimensions higher than two. The proof uses Poisson processes and Stein's method. We also propose a new method for computing the variance and derive an asymptotic expansion. The methods of proof we propose are of some generality and applicable to other regions such as d-dimensional simplex.

[1]  Philippe Flajolet,et al.  Euler Sums and Contour Integral Representations , 1998, Exp. Math..

[2]  O. Barndorfi-nielsen,et al.  On the distribution of the number of admissible points in a vector , 1966 .

[3]  Philippe Flajolet,et al.  Mellin Transforms and Asymptotics: Finite Differences and Rice's Integrals , 1995, Theor. Comput. Sci..

[4]  Philippe Flajolet,et al.  Hypergeometrics and the Cost Structure of Quadtrees , 1995, Random Struct. Algorithms.

[5]  Yuliy Baryshnikov,et al.  Supporting-points processes and some of their applications , 2000 .

[6]  Barry O'Neill,et al.  The Number of Outcomes in the Pareto-Optimal Set of Discrete Bargaining Games , 1981, Math. Oper. Res..

[7]  Anna Carlsund Notes on the variance of the number of maxima in three dimensions , 2003, Random Struct. Algorithms.

[8]  T. A. Azlarov,et al.  Refinements of Yu. V. Prokhorov's theorems on the asymptotic behavior of the binomial distribution , 1987 .

[9]  Hsien-Kuei Hwang,et al.  LIMIT THEOREMS FOR THE NUMBER OF MAXIMA IN RANDOM SAMPLES FROM PLANAR REGIONS , 2001 .

[10]  Luc Devroye,et al.  A Note on the Expected Time for Finding Maxima by List Algorithms , 1999, Algorithmica.

[11]  Svante Janson,et al.  Random graphs , 2000, Wiley-Interscience series in discrete mathematics and optimization.

[12]  Alan M. Frieze,et al.  Random graphs , 2006, SODA '06.

[13]  Hsien-Kuei Hwang,et al.  On the variance of the number of maxima in random vectors and its applications , 1998 .

[14]  Svante Janson,et al.  Random graphs , 2000, ZOR Methods Model. Oper. Res..

[15]  A. I. Kuksa,et al.  The method of evaluating the number of conditionally optimal trajectories of discrete separable dynamic programming , 1972 .

[16]  Luc Devroye,et al.  Lecture Notes on Bucket Algorithms , 1986, Progress in Computer Science.

[17]  H. T. Kung,et al.  On the Average Number of Maxima in a Set of Vectors and Applications , 1978, JACM.

[18]  V. M. Ivanin Estimate of the mathematical expectation of the number of elements in a Pareto set , 1975 .

[19]  Christian Buchta,et al.  On the Average Number of Maxima in a Set of Vectors , 1989, Inf. Process. Lett..

[20]  A. D. Barbour,et al.  The number of two-dimensional maxima , 2001, Advances in Applied Probability.

[21]  Mordecai J. Golin,et al.  A provably fast linear-expected-time maxima-finding algorithm , 1994, Algorithmica.

[22]  Gilbert Labelle,et al.  Combinatorial Variations on Multidimensional Quadtrees , 1995, J. Comb. Theory, Ser. A.

[23]  Luc Devroye A Note on Finding Convex Hulls Via Maximal Vectors , 1980, Inf. Process. Lett..

[24]  Hsien-Kuei Hwang,et al.  PHASE CHANGES IN RANDOM RECURSIVE STRUCTURES AND ALGORITHMS , 2004 .

[25]  Hsien-Kuei Hwang,et al.  Berry-Esseen Bounds for the Number of Maxima in Planar Regions , 2003 .

[26]  H. Calpine,et al.  Some properties of pareto-optimal choices in decision problems , 1976 .

[27]  Charles E. Blair,et al.  Random inequality constraint systems with few variables , 1986, Math. Program..

[28]  A. Barbour,et al.  Poisson Approximation , 1992 .

[29]  Hsien-Kuei Hwang,et al.  Efficient maxima-finding algorithms for random planar samples , 2003, Discret. Math. Theor. Comput. Sci..