A stable X‐FEM in cohesive transition from closed to open crack
暂无分享,去创建一个
Ignacio Romero | S. Sadaba | Carlos González | Javier LLorca | I. Romero | J. Llorca | C. González | S. Sádaba
[1] R. Courant,et al. Über die partiellen Differenzengleichungen der mathematischen Physik , 1928 .
[2] Francisco Armero,et al. Finite elements with embedded strong discontinuities for the modeling of failure in solids , 2007 .
[3] J. C. Simo,et al. A CLASS OF MIXED ASSUMED STRAIN METHODS AND THE METHOD OF INCOMPATIBLE MODES , 1990 .
[4] Xiaopeng Xu,et al. Void nucleation by inclusion debonding in a crystal matrix , 1993 .
[5] Julien Réthoré,et al. Efficient explicit time stepping for the eXtended Finite Element Method (X‐FEM) , 2006 .
[6] I. Babuska,et al. The partition of unity finite element method: Basic theory and applications , 1996 .
[7] John E. Dolbow,et al. Stable imposition of stiff constraints in explicit dynamics for embedded finite element methods , 2012 .
[8] L. J. Sluys,et al. A new method for modelling cohesive cracks using finite elements , 2001 .
[9] G. Ventura. On the elimination of quadrature subcells for discontinuous functions in the eXtended Finite‐Element Method , 2006 .
[10] Ted Belytschko,et al. A method for dynamic crack and shear band propagation with phantom nodes , 2006 .
[11] Wolfgang A. Wall,et al. An embedded Dirichlet formulation for 3D continua , 2010 .
[12] Thomas-Peter Fries,et al. A localized mixed‐hybrid method for imposing interfacial constraints in the extended finite element method (XFEM) , 2009 .
[13] P. Hansbo,et al. An unfitted finite element method, based on Nitsche's method, for elliptic interface problems , 2002 .
[14] Ted Belytschko,et al. A comment on the article ``A finite element method for simulation of strong and weak discontinuities in solid mechanics'' by A. Hansbo and P. Hansbo [Comput. Methods Appl. Mech. Engrg. 193 (2004) 3523-3540] , 2006 .
[15] J. Dolbow,et al. Robust imposition of Dirichlet boundary conditions on embedded surfaces , 2012 .
[16] Stephen R Hallett,et al. Modelling mesh independent transverse cracks in laminated composites with a simplified cohesive segment method , 2012 .
[17] Paolo Zunino,et al. An unfitted interface penalty method for the numerical approximation of contrast problems , 2011 .
[18] Ludovic Noels,et al. A general discontinuous Galerkin method for finite hyperelasticity. Formulation and numerical applications , 2006 .
[19] Zvi Hashin,et al. The Spherical Inclusion With Imperfect Interface , 1991 .
[20] Ted Belytschko,et al. Elastic crack growth in finite elements with minimal remeshing , 1999 .
[21] Joshua R. Smith,et al. Universal binding energy curves for metals and bimetallic interfaces , 1981 .
[22] Z. Hashin. Thin interphase/imperfect interface in elasticity with application to coated fiber composites , 2002 .
[23] I. Babuska. The finite element method with Lagrangian multipliers , 1973 .
[24] Tod A. Laursen,et al. On methods for stabilizing constraints over enriched interfaces in elasticity , 2009 .
[25] E. Lorentz,et al. A mixed interface finite element for cohesive zone models , 2008 .
[26] Angelo Simone,et al. Partition of unity-based discontinuous elements for interface phenomena: computational issues , 2004 .
[27] Pedro Díez,et al. A stable extended FEM formulation for multi‐phase problems enforcing the accuracy of the fluxes through Lagrange multipliers , 2013 .
[28] K. Bathe,et al. Stability and patch test performance of contact discretizations and a new solution algorithm , 2001 .
[29] L. J. Sluys,et al. A phantom node formulation with mixed mode cohesive law for splitting in laminates , 2009 .
[30] Ronaldo I. Borja,et al. Stabilized low-order finite elements for frictional contact with the extended finite element method , 2010 .
[31] Marie-Christine Baietto,et al. Stabilized global–local X‐FEM for 3D non‐planar frictional crack using relevant meshes , 2011 .
[32] J. Oliver. On the discrete constitutive models induced by strong discontinuity kinematics and continuum constitutive equations , 2000 .
[33] Ramon Codina,et al. A symmetric method for weakly imposing Dirichlet boundary conditions in embedded finite element meshes , 2012 .
[34] J. Nitsche. Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind , 1971 .
[35] Jean-François Remacle,et al. Imposing Dirichlet boundary conditions in the eXtended Finite Element Method , 2011 .
[36] Julio Gálvez,et al. An embedded crack model for finite element analysis of concrete fracture , 2007 .
[37] Isaac Harari,et al. An efficient finite element method for embedded interface problems , 2009 .
[38] Chongyu Hua,et al. An inverse transformation for quadrilateral isoparametric elements: Analysis and application , 1990 .
[39] M. Ortiz,et al. FINITE-DEFORMATION IRREVERSIBLE COHESIVE ELEMENTS FOR THREE-DIMENSIONAL CRACK-PROPAGATION ANALYSIS , 1999 .
[40] Stephen A. Vavasis,et al. Obtaining initially rigid cohesive finite element models that are temporally convergent , 2005 .
[41] Jean-François Remacle,et al. A computational approach to handle complex microstructure geometries , 2003 .
[42] Nicolas Moës,et al. Mass lumping strategies for X‐FEM explicit dynamics: Application to crack propagation , 2008 .