A stable X‐FEM in cohesive transition from closed to open crack

Sergio Sadaba1∗, Ignacio Romero, Carlos Gonzalez and Javier LLorca 1 Institute Imdea Materials, C/Eric Kandel 2; 28906 Getafe (Madrid), sergio.sadaba@imdea.org, www.materials.imdea.org 2 Technical University of Madrid, E.T.S.I.I., C/ Jose Gutierrez Abascal, 2; 28006 Madrid, ignacio.romero@upm.es, bigmac.mecaest.etsii.upm.es 3 Technical University of Madrid, E.T.S.I.C.C.P., C/ Profesor Aranguren, s/n; 28040 Madrid, cgonzalez@mater.upm.es, www.mater.upm.es

[1]  R. Courant,et al.  Über die partiellen Differenzengleichungen der mathematischen Physik , 1928 .

[2]  Francisco Armero,et al.  Finite elements with embedded strong discontinuities for the modeling of failure in solids , 2007 .

[3]  J. C. Simo,et al.  A CLASS OF MIXED ASSUMED STRAIN METHODS AND THE METHOD OF INCOMPATIBLE MODES , 1990 .

[4]  Xiaopeng Xu,et al.  Void nucleation by inclusion debonding in a crystal matrix , 1993 .

[5]  Julien Réthoré,et al.  Efficient explicit time stepping for the eXtended Finite Element Method (X‐FEM) , 2006 .

[6]  I. Babuska,et al.  The partition of unity finite element method: Basic theory and applications , 1996 .

[7]  John E. Dolbow,et al.  Stable imposition of stiff constraints in explicit dynamics for embedded finite element methods , 2012 .

[8]  L. J. Sluys,et al.  A new method for modelling cohesive cracks using finite elements , 2001 .

[9]  G. Ventura On the elimination of quadrature subcells for discontinuous functions in the eXtended Finite‐Element Method , 2006 .

[10]  Ted Belytschko,et al.  A method for dynamic crack and shear band propagation with phantom nodes , 2006 .

[11]  Wolfgang A. Wall,et al.  An embedded Dirichlet formulation for 3D continua , 2010 .

[12]  Thomas-Peter Fries,et al.  A localized mixed‐hybrid method for imposing interfacial constraints in the extended finite element method (XFEM) , 2009 .

[13]  P. Hansbo,et al.  An unfitted finite element method, based on Nitsche's method, for elliptic interface problems , 2002 .

[14]  Ted Belytschko,et al.  A comment on the article ``A finite element method for simulation of strong and weak discontinuities in solid mechanics'' by A. Hansbo and P. Hansbo [Comput. Methods Appl. Mech. Engrg. 193 (2004) 3523-3540] , 2006 .

[15]  J. Dolbow,et al.  Robust imposition of Dirichlet boundary conditions on embedded surfaces , 2012 .

[16]  Stephen R Hallett,et al.  Modelling mesh independent transverse cracks in laminated composites with a simplified cohesive segment method , 2012 .

[17]  Paolo Zunino,et al.  An unfitted interface penalty method for the numerical approximation of contrast problems , 2011 .

[18]  Ludovic Noels,et al.  A general discontinuous Galerkin method for finite hyperelasticity. Formulation and numerical applications , 2006 .

[19]  Zvi Hashin,et al.  The Spherical Inclusion With Imperfect Interface , 1991 .

[20]  Ted Belytschko,et al.  Elastic crack growth in finite elements with minimal remeshing , 1999 .

[21]  Joshua R. Smith,et al.  Universal binding energy curves for metals and bimetallic interfaces , 1981 .

[22]  Z. Hashin Thin interphase/imperfect interface in elasticity with application to coated fiber composites , 2002 .

[23]  I. Babuska The finite element method with Lagrangian multipliers , 1973 .

[24]  Tod A. Laursen,et al.  On methods for stabilizing constraints over enriched interfaces in elasticity , 2009 .

[25]  E. Lorentz,et al.  A mixed interface finite element for cohesive zone models , 2008 .

[26]  Angelo Simone,et al.  Partition of unity-based discontinuous elements for interface phenomena: computational issues , 2004 .

[27]  Pedro Díez,et al.  A stable extended FEM formulation for multi‐phase problems enforcing the accuracy of the fluxes through Lagrange multipliers , 2013 .

[28]  K. Bathe,et al.  Stability and patch test performance of contact discretizations and a new solution algorithm , 2001 .

[29]  L. J. Sluys,et al.  A phantom node formulation with mixed mode cohesive law for splitting in laminates , 2009 .

[30]  Ronaldo I. Borja,et al.  Stabilized low-order finite elements for frictional contact with the extended finite element method , 2010 .

[31]  Marie-Christine Baietto,et al.  Stabilized global–local X‐FEM for 3D non‐planar frictional crack using relevant meshes , 2011 .

[32]  J. Oliver On the discrete constitutive models induced by strong discontinuity kinematics and continuum constitutive equations , 2000 .

[33]  Ramon Codina,et al.  A symmetric method for weakly imposing Dirichlet boundary conditions in embedded finite element meshes , 2012 .

[34]  J. Nitsche Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind , 1971 .

[35]  Jean-François Remacle,et al.  Imposing Dirichlet boundary conditions in the eXtended Finite Element Method , 2011 .

[36]  Julio Gálvez,et al.  An embedded crack model for finite element analysis of concrete fracture , 2007 .

[37]  Isaac Harari,et al.  An efficient finite element method for embedded interface problems , 2009 .

[38]  Chongyu Hua,et al.  An inverse transformation for quadrilateral isoparametric elements: Analysis and application , 1990 .

[39]  M. Ortiz,et al.  FINITE-DEFORMATION IRREVERSIBLE COHESIVE ELEMENTS FOR THREE-DIMENSIONAL CRACK-PROPAGATION ANALYSIS , 1999 .

[40]  Stephen A. Vavasis,et al.  Obtaining initially rigid cohesive finite element models that are temporally convergent , 2005 .

[41]  Jean-François Remacle,et al.  A computational approach to handle complex microstructure geometries , 2003 .

[42]  Nicolas Moës,et al.  Mass lumping strategies for X‐FEM explicit dynamics: Application to crack propagation , 2008 .