Atoms to Phenotypes: Molecular Design Principles of Cellular Energy Metabolism

We report a 100-million atom-scale model of an entire cell organelle, a photosynthetic chromatophore vesicle from a purple bacterium, that reveals the cascade of energy conversion steps culminating in the generation of ATP from sunlight. Molecular dynamics simulations of this vesicle elucidate how the integral membrane complexes influence local curvature to tune photoexcitation of pigments. Brownian dynamics of small molecules within the chromatophore probe the mechanisms of directional charge transport under various pH and salinity conditions. Reproducing phenotypic properties from atomistic details, a kinetic model evinces that low-light adaptations of the bacterium emerge as a spontaneous outcome of optimizing the balance between the chromatophore's structural integrity and robust energy conversion. Parallels are drawn with the more universal mitochondrial bioenergetic machinery, from whence molecular-scale insights into the mechanism of cellular aging are inferred. Together, our integrative method and spectroscopic experiments pave the way to first-principles modeling of whole living cells.

[1]  G. Laczkó,et al.  Unbinding of oxidized cytochrome c from photosynthetic reaction center of Rhodobacter sphaeroides is the bottleneck of fast turnover. , 1999, Biochemistry.

[2]  Josep C. Pàmies,et al.  Protein shape and crowding drive domain formation and curvature in biological membranes. , 2008, Biophysical journal.

[3]  J. Russell,et al.  Energetics of bacterial growth: balance of anabolic and catabolic reactions. , 1995, Microbiological reviews.

[4]  Peter G. Adams,et al.  Adaptation of intracytoplasmic membranes to altered light intensity in Rhodobacter sphaeroides. , 2012, Biochimica et biophysica acta.

[5]  U. Kleinekathöfer,et al.  Time-dependent atomistic view on the electronic relaxation in light-harvesting system II. , 2010, The journal of physical chemistry. B.

[6]  Nano-mechanical mapping of the interactions between surface-bound RC-LH1-PufX core complexes and cytochrome c2 attached to an AFM probe , 2013, Photosynthesis Research.

[7]  C. Hunter,et al.  Direct Imaging of Protein Organization in an Intact Bacterial Organelle Using High-Resolution Atomic Force Microscopy , 2016, ACS nano.

[8]  D. Tieleman,et al.  The MARTINI force field: coarse grained model for biomolecular simulations. , 2007, The journal of physical chemistry. B.

[9]  Klaus Schulten,et al.  Integration of energy and electron transfer processes in the photosynthetic membrane of Rhodobacter sphaeroides. , 2014, Biochimica et biophysica acta.

[10]  M. Sener,et al.  Determination of Cell Doubling Times from the Return-on-Investment Time of Photosynthetic Vesicles Based on Atomic Detail Structural Models. , 2017, The journal of physical chemistry. B.

[11]  Klaus Schulten,et al.  First passage time approach to diffusion controlled reactions , 1980 .

[12]  K. Vinnakota,et al.  Analysis of the kinetics and bistability of ubiquinol:cytochrome c oxidoreductase. , 2013, Biophysical journal.

[13]  C. Hunter,et al.  Quantitative proteomic analysis of intracytoplasmic membrane development in Rhodobacter sphaeroides , 2012, Molecular microbiology.

[14]  F. Mavelli,et al.  Kinetics of the quinone binding reaction at the QB site of reaction centers from the purple bacteria Rhodobacter sphaeroides reconstituted in liposomes. , 2003, European journal of biochemistry.

[15]  Xavier Periole,et al.  Combining an Elastic Network With a Coarse-Grained Molecular Force Field: Structure, Dynamics, and Intermolecular Recognition. , 2009, Journal of chemical theory and computation.

[16]  Rommie E. Amaro,et al.  LipidWrapper: An Algorithm for Generating Large-Scale Membrane Models of Arbitrary Geometry , 2014, PLoS Comput. Biol..

[17]  Klaus Schulten,et al.  Intrinsic curvature properties of photosynthetic proteins in chromatophores. , 2008, Biophysical journal.

[18]  P. Bullough,et al.  Three-dimensional structure of the Rhodobacter sphaeroides RC-LH1-PufX complex: dimerization and quinone channels promoted by PufX. , 2013, Biochemistry.

[19]  Chang-an Yu,et al.  Definition of the Interaction Domain for Cytochrome con the Cytochrome bc 1 Complex , 2000, The Journal of Biological Chemistry.

[20]  D. Choi,et al.  Ions, cell volume, and apoptosis. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[21]  P. Hellwig Infrared spectroscopic markers of quinones in proteins from the respiratory chain. , 2015, Biochimica et biophysica acta.

[22]  J. Jackson,et al.  The relation between membrane ionic current and ATP synthesis in chromatophores from Rhodopseudomonas capsulata , 1983 .

[23]  K. Xiao,et al.  Photoinduced Electron Transfer between the Rieske Iron-Sulfur Protein and Cytochrome c 1 in theRhodobacter sphaeroides Cytochromebc 1 Complex , 2002, Journal of Biological Chemistry.

[24]  R. Niederman,et al.  Proteomic analysis of the developing intracytoplasmic membrane in Rhodobacter sphaeroides during adaptation to low light intensity. , 2010, Advances in experimental medicine and biology.

[25]  Klaus Schulten,et al.  Protein-induced membrane curvature investigated through molecular dynamics flexible fitting. , 2009, Biophysical journal.

[26]  D. Tieleman,et al.  Perspective on the Martini model. , 2013, Chemical Society reviews.

[27]  K. Schulten,et al.  Binding Site Recognition and Docking Dynamics of a Single Electron Transport Protein: Cytochrome c2. , 2016, Journal of the American Chemical Society.

[28]  James P. Allen Design of energy-transducing artificial cells , 2017, Proceedings of the National Academy of Sciences.

[29]  J. Olsen,et al.  The Organization of LH2 Complexes in Membranes from Rhodobacter sphaeroides* , 2008, Journal of Biological Chemistry.

[30]  A. Aksimentiev,et al.  Exploring transmembrane transport through α -hemolysin with grid-steered molecular dynamics , 2007 .

[31]  A. Laaksonen,et al.  Molecular Dynamics Simulations of Ubiquinone inside a Lipid Bilayer , 2001 .

[32]  Jianshu Cao,et al.  Impact of the lipid bilayer on energy transfer kinetics in the photosynthetic protein LH2† †Electronic supplementary information (ESI) available. See DOI: 10.1039/c7sc04814a , 2018, Chemical science.

[33]  G. Turner,et al.  Transfer of Genes Coding for Apoproteins of Reaction Centre and Light-harvesting LH1 Complexes to Rhodobacter sphaeroides , 1988 .

[34]  N. Rösch,et al.  An intermediate neglect of differential overlap (INDO) technique for lanthanide complexes: studies on lanthanide halides , 1987 .

[35]  L. Esser,et al.  Structural analysis of cytochrome bc1 complexes: implications to the mechanism of function. , 2013, Biochimica et biophysica acta.

[36]  Besian I. Sejdiu,et al.  Emerging Diversity in Lipid–Protein Interactions , 2019, Chemical reviews.

[37]  A. Verméglio,et al.  Supramolecular organization of the photosynthetic apparatus of Rhodobacter sphaeroides , 1999, The EMBO journal.

[38]  E. Cholewa,et al.  Electric-field-driven surface aggregation of a model zwitterionic surfactant. , 2007, Langmuir : the ACS journal of surfaces and colloids.

[39]  Hiroaki Suzuki,et al.  Calcium Ions Are Required for the Enhanced Thermal Stability of the Light-harvesting-Reaction Center Core Complex from Thermophilic Purple Sulfur Bacterium Thermochromatium tepidum* , 2009, Journal of Biological Chemistry.

[40]  Joachim Frank,et al.  Functional Pathways of Biomolecules Retrieved from Single-particle Snapshots , 2018, bioRxiv.

[41]  R. Niederman,et al.  The accumulation of the light-harvesting 2 complex during remodeling of the Rhodobacter sphaeroides intracytoplasmic membrane results in a slowing of the electron transfer turnover rate of photochemical reaction centers. , 2011, Biochemistry.

[42]  R. Casadio,et al.  A high diffusion coefficient for coenzyme Q10 might be related to a folded structure , 1998, FEBS letters.

[43]  T. Pohl,et al.  Spin labeling of the Escherichia coli NADH ubiquinone oxidoreductase (complex I). , 2010, Biochimica et biophysica acta.

[44]  K. Schulten,et al.  Possible pathway for ubiquinone shuttling in Rhodospirillum rubrum revealed by molecular dynamics simulation. , 2007, Biophysical journal.

[45]  D. van der Spoel,et al.  GROMACS: A message-passing parallel molecular dynamics implementation , 1995 .

[46]  Chico Q. Camargo Physics makes rules, evolution rolls the dice , 2018, Science.

[47]  V. Helms,et al.  Bridging the Gap: Linking Molecular Simulations and Systemic Descriptions of Cellular Compartments , 2010, PloS one.

[48]  Jonathan R. Karr,et al.  A Whole-Cell Computational Model Predicts Phenotype from Genotype , 2012, Cell.

[49]  Frank Neese,et al.  Software update: the ORCA program system, version 4.0 , 2018 .

[50]  Nathan A. Baker,et al.  Electrostatics of nanosystems: Application to microtubules and the ribosome , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[51]  Klaus Schulten,et al.  Photosynthetic vesicle architecture and constraints on efficient energy harvesting. , 2010, Biophysical journal.

[52]  S. R. Gadre,et al.  Unveiling electrostatic portraits of quinones in reduction and protonation states , 2018, Journal of Chemical Sciences.

[53]  T. Anno,et al.  Electronic States of p-Benzoquinone. III. Calculation of the Out-of-plane Vibrational Frequencies in the Ground Electronic State , 1958 .

[54]  Helgi I. Ingólfsson,et al.  Computational Modeling of Realistic Cell Membranes , 2019, Chemical reviews.

[55]  K Schulten,et al.  VMD: visual molecular dynamics. , 1996, Journal of molecular graphics.

[56]  Laxmikant V. Kalé,et al.  Scalable molecular dynamics with NAMD , 2005, J. Comput. Chem..

[57]  Aleksei Aksimentiev,et al.  Predicting the DNA sequence dependence of nanopore ion current using atomic-resolution Brownian dynamics. , 2012, The journal of physical chemistry. C, Nanomaterials and interfaces.

[58]  Peter Ortoleva,et al.  Epitope fluctuations in the human papillomavirus are under dynamic allosteric control: a computational evaluation of a new vaccine design strategy. , 2013, Journal of the American Chemical Society.

[59]  Vivek Sharma,et al.  Distribution and dynamics of quinones in the lipid bilayer mimicking the inner membrane of mitochondria. , 2016, Biochimica et biophysica acta.

[60]  Danielle E. Chandler,et al.  Light harvesting by lamellar chromatophores in Rhodospirillum photometricum. , 2014, Biophysical journal.

[61]  N. Linden,et al.  How Static Disorder Mimics Decoherence in Anisotropy Pump-Probe Experiments on Purple-Bacteria Light Harvesting Complexes. , 2016, The journal of physical chemistry. B.

[62]  D. Green,et al.  Apoptotic Pathways: Ten Minutes to Dead , 2005, Cell.

[63]  M. Karplus,et al.  Molecular dynamics simulations in biology , 1990, Nature.

[64]  Yifan Cheng Single-Particle Cryo-EM at Crystallographic Resolution , 2015, Cell.

[65]  C. Hunter,et al.  Mapping the ultrafast flow of harvested solar energy in living photosynthetic cells , 2017, Nature Communications.

[66]  M. Sener,et al.  Correction to "Determination of Cell Doubling Times from the Return-on-Investment Time of Photosynthetic Vesicles Based on Atomic Detail Structural Models". , 2017, The journal of physical chemistry. B.

[67]  S. Yesylevskyy,et al.  The influence of curvature on the properties of the plasma membrane. Insights from atomistic molecular dynamics simulations , 2017, Scientific Reports.

[68]  L. Kourkoutis,et al.  Connectivity of centermost chromatophores in Rhodobacter sphaeroides bacteria , 2018, Molecular microbiology.

[69]  P. Bullough,et al.  Three-dimensional Reconstruction of a Membrane-bending Complex , 2008, Journal of Biological Chemistry.

[70]  A. Crofts,et al.  Structure and function of cytochrome bc complexes. , 2000, Annual review of biochemistry.

[71]  J. Hall,et al.  Reaction of cytochromes c and c2 with the Rhodobacter sphaeroides reaction center involves the heme crevice domain. , 1987, Biochemistry.

[72]  K. Schulten,et al.  Role of water in transient cytochrome c2 docking , 2004 .

[73]  A. Crofts,et al.  The cytochrome bc1 complex: function in the context of structure. , 2004, Annual review of physiology.

[74]  Klaus Schulten,et al.  Atomic-level structural and functional model of a bacterial photosynthetic membrane vesicle , 2007, Proceedings of the National Academy of Sciences.

[75]  Robert Eugene Blankenship Molecular mechanisms of photosynthesis , 2002 .

[76]  C. A. Siebert,et al.  Cryo-EM structure of the Blastochloris viridis LH1–RC complex at 2.9 Å , 2018, Nature.

[77]  Rafael C. Bernardi,et al.  Computational Methodologies for Real-Space Structural Refinement of Large Macromolecular Complexes. , 2016, Annual review of biophysics.

[78]  M. Gunner,et al.  Modeling binding kinetics at the Q(A) site in bacterial reaction centers. , 2005, Biochemistry.

[79]  Th. Förster Zwischenmolekulare Energiewanderung und Fluoreszenz , 1948 .

[80]  A. Korte,et al.  The advantages and limitations of trait analysis with GWAS: a review , 2013, Plant Methods.

[81]  J. A. Letts,et al.  The architecture of respiratory supercomplexes , 2016, Nature.

[82]  D. Ermak,et al.  Brownian dynamics with hydrodynamic interactions , 1978 .

[83]  M. Karplus Development of multiscale models for complex chemical systems: from H+H₂ to biomolecules (Nobel Lecture). , 2014, Angewandte Chemie.

[84]  Michael J Rust,et al.  Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (STORM) , 2006, Nature Methods.

[85]  G. Lorigan,et al.  Determining the topology of integral membrane peptides using EPR spectroscopy. , 2006, Journal of the American Chemical Society.

[86]  Sozanne R. Solmaz,et al.  Electron transfer between yeast cytochrome bc(1) complex and cytochrome c: a structural analysis. , 2002, Biochimica et biophysica acta.

[87]  V. Novoderezhkin,et al.  The theory of Forster-type migration between clusters of strongly interacting molecules: application to light-harvesting complexes of purple bacteria , 1996 .

[88]  Eric R. May,et al.  Buckling Under Pressure: Curvature-Based Lipid Segregation and Stability Modulation in Cardiolipin-Containing Bilayers. , 2017, Langmuir : the ACS journal of surfaces and colloids.

[89]  K. Schulten,et al.  Chemomechanical Coupling in Hexameric Protein-Protein Interfaces Harnesses Energy within V-Type ATPases. , 2017, Journal of the American Chemical Society.

[90]  K. O. van der Werf,et al.  Flexibility and Size Heterogeneity of the LH1 Light Harvesting Complex Revealed by Atomic Force Microscopy , 2004, Journal of Biological Chemistry.

[91]  J. Lavergne,et al.  Functional Consequences of the Organization of the Photosynthetic Apparatus in Rhodobacter sphaeroides , 2005, Journal of Biological Chemistry.

[92]  Pu Qian,et al.  Probing the local lipid environment of the Rhodobacter sphaeroides cytochrome bc1 and Synechocystis sp. PCC 6803 cytochrome b6f complexes with styrene maleic acid , 2017, Biochimica et biophysica acta. Bioenergetics.

[93]  J. Lavergne,et al.  Functional Coupling Between Reaction Centers and Cytochrome bc 1 Complexes , 2009 .

[94]  Klaus Schulten,et al.  Overall energy conversion efficiency of a photosynthetic vesicle , 2016, eLife.

[95]  F. Daldal,et al.  Demonstration of Short-lived Complexes of Cytochrome c with Cytochrome bc1 by EPR Spectroscopy , 2008, Journal of Biological Chemistry.

[96]  Cvetelin Vasilev,et al.  Engineering of a calcium-ion binding site into the RC-LH1-PufX complex of Rhodobacter sphaeroides to enable ion-dependent spectral red-shifting , 2017, Biochimica et biophysica acta. Bioenergetics.

[97]  H. P. Lamichhane,et al.  Comparison of calculated and experimental FTIR spectra of specifically labeled ubiquinones , 2011 .

[98]  Ville R. I. Kaila,et al.  New perspectives on proton pumping in cellular respiration. , 2015, Chemical reviews.

[99]  Indra D Sahu,et al.  Use of electron paramagnetic resonance to solve biochemical problems. , 2013, Biochemistry.

[100]  J. Lavergne,et al.  Functional Consequences of the Organization of the Photosynthetic Apparatus in Rhodobacter sphaeroides , 2005, Journal of Biological Chemistry.