Randomized Spectral and Fourier-Wavelet Methods for multidimensional Gaussian random vector fields

Abstract We develop some new variations of the Randomized Spectral Method (RSM) and Fourier-Wavelet Method (FWM) for the simulation of homogeneous Gaussian random vector fields based on plane wave decompositions. We then compare the various random field simulation methods through the examination of their efficiency and the quality of the Eulerian and Lagrangian statistical characteristics of a three-dimensional isotropic incompressible random field as simulated by ensemble or by spatial averaging. We find that the RSM, which is easier to implement, can simulate random fields with accurate second order Eulerian and Lagrangian correlations more efficiently than the FWM when the statistics are collected through ensemble averages. When the correlation structure is inferred from spatial averages of a single realization of the random field (through appeal to an ergodic theorem), the FWM is more efficient in simulating an accurate Eulerian correlation function, and both the FWM and RSM are of comparable efficiency in simulating second order Lagrangian statistics accurately.

[1]  N. Krylov,et al.  Introduction to the Theory of Random Processes , 2002 .

[2]  Christian Soize,et al.  Numerical methods and mathematical aspects for simulation of homogeneous and non homogeneous gaussian vector fields , 1995 .

[3]  Orazgeldy Kurbanmuradov,et al.  Convergence of the randomized spectral models of homogeneous Gaussian random fields , 1995, Monte Carlo Methods Appl..

[4]  P. Spanos,et al.  Random field representation in a biorthogonal wavelet basis , 2001 .

[5]  Chris Cameron Relative efficiency of Gaussian stochastic process sampling procedures , 2003 .

[6]  Karl Sabelfeld,et al.  Stochastic flow simulation in 3D porous media , 2005, Monte Carlo Methods Appl..

[7]  Karl Karlovich Sabelʹfelʹd Monte Carlo methods in boundary value problems , 1991 .

[8]  Masanobu Shinozuka,et al.  Simulation of Multivariate and Multidimensional Random Processes , 1971 .

[9]  Andrew J. Majda,et al.  A Fourier-Wavelet Monte Carlo Method for Fractal Random Fields , 1997 .

[10]  Andrew J. Majda,et al.  Random shearing direction models for isotropic turbulent diffusion , 1994 .

[11]  P. Kloeden,et al.  Numerical Solution of Stochastic Differential Equations , 1992 .

[12]  Karl Sabelfeld,et al.  Stochastic Eulerian model for the flow simulation in porous media. Unconfined aquifers * , 2004, Monte Carlo Methods Appl..

[13]  U. Hornung Homogenization and porous media , 1996 .

[14]  Andrew J. Majda,et al.  A Wavelet Monte Carlo Method for Turbulent Diffusion with Many Spatial Scales , 1994 .

[15]  Karl K. Sabelfeld,et al.  Stochastic Lagrangian Models for Two-Particle Motion in Turbulent Flows , 1997, Monte Carlo Methods Appl..

[16]  Josselin Garnier,et al.  Wave Propagation and Time Reversal in Randomly Layered Media , 2007 .

[17]  John H. Cushman,et al.  The Physics of Fluids in Hierarchical Porous Media: Angstroms to Miles , 1997 .

[18]  A. Monin,et al.  Statistical fluid mechanics: Mechanics of turbulence. Volume 2 /revised and enlarged edition/ , 1975 .

[19]  R. Voss Random Fractal Forgeries , 1985 .

[20]  R. Kraichnan Diffusion by a Random Velocity Field , 1970 .

[21]  Ergodic Simulations for Diffusion in Random Velocity Fields , 2008 .

[22]  Ingrid Daubechies,et al.  Ten Lectures on Wavelets , 1992 .

[23]  Jack Xin,et al.  An Introduction to Fronts in Random Media , 2009 .

[24]  Amara Lynn Graps,et al.  An introduction to wavelets , 1995 .

[25]  Karl Sabelfeld,et al.  Stochastic simulation of particle transport by a random Darcy flow through a porous cylinder , 2009, Monte Carlo Methods Appl..

[26]  R. Ghanem,et al.  Stochastic Finite Element Expansion for Random Media , 1989 .

[27]  R. Bass,et al.  Review: P. Billingsley, Convergence of probability measures , 1971 .

[28]  C. R. Dietrich,et al.  Fast and Exact Simulation of Stationary Gaussian Processes through Circulant Embedding of the Covariance Matrix , 1997, SIAM J. Sci. Comput..

[29]  Peter R. Kramer,et al.  Comparative analysis of multiscale Gaussian random field simulation algorithms , 2007, J. Comput. Phys..

[30]  Karl Sabelfeld,et al.  Stochastic Spectral and Fourier-Wavelet Methods for Vector Gaussian Random Fields , 2006, Monte Carlo Methods Appl..

[31]  Józef Joachim Telega,et al.  Flows in random porous media: effective models , 2003 .

[32]  Karl Sabelfeld,et al.  Stochastic Lagrangian Models for Two-Particle Motion in Turbulent Flows. Numerical Results , 1997, Monte Carlo Methods Appl..

[33]  A. Majda,et al.  SIMPLIFIED MODELS FOR TURBULENT DIFFUSION : THEORY, NUMERICAL MODELLING, AND PHYSICAL PHENOMENA , 1999 .

[34]  Desmond J. Higham,et al.  An Algorithmic Introduction to Numerical Simulation of Stochastic Differential Equations , 2001, SIAM Rev..

[35]  G. Weiss,et al.  A First Course on Wavelets , 1996 .

[36]  A. S. Monin,et al.  Statistical Fluid Mechanics: The Mechanics of Turbulence , 1998 .

[37]  Andrew J. Majda,et al.  A new algorithm with plane waves and wavelets for random velocity fields with many spatial scales , 1995 .

[38]  M. Shinozuka,et al.  Simulation of Stochastic Processes by Spectral Representation , 1991 .

[39]  E. Paleologos,et al.  Stochastic Methods for Flow in Porous Media, Coping With Uncertainties , 2003 .

[40]  E Weinan,et al.  Finite difference heterogeneous multi-scale method for homogenization problems , 2003 .

[41]  J. Viecelli,et al.  Functional representation of power-law random fields and time series , 1991 .

[42]  L. Gelhar Stochastic Subsurface Hydrology , 1992 .

[43]  Karl Sabelfeld,et al.  Stochastic Eulerian model for the flow simulation in porous media , 2003, Monte Carlo Methods Appl..

[44]  N. Malik,et al.  Kinematic simulation of homogeneous turbulence by unsteady random Fourier modes , 1992, Journal of Fluid Mechanics.

[45]  Paul Krée,et al.  Probabilistic Methods in Applied Physics , 1995 .

[46]  Pol D. Spanos,et al.  Random Field Representation and Synthesis Using Wavelet Bases , 1996 .

[47]  E Weinan,et al.  Heterogeneous multiscale methods: A review , 2007 .

[48]  L. Schumaker Spline Functions: Basic Theory , 1981 .

[49]  A. Yaglom Correlation Theory of Stationary and Related Random Functions I: Basic Results , 1987 .

[50]  Andrew J. Majda,et al.  Monte Carlo methods for turbulent tracers with long range and fractal random velocity fields. , 1997, Chaos.

[51]  Nicolae Suciu,et al.  Spatially inhomogeneous transition probabilities as memory effects for diffusion in statistically homogeneous random velocity fields. , 2010, Physical review. E, Statistical, nonlinear, and soft matter physics.

[52]  M. W. Davis,et al.  Production of conditional simulations via the LU triangular decomposition of the covariance matrix , 1987, Mathematical Geology.

[53]  Alan S. Willsky,et al.  A Krylov Subspace Method for Covariance Approximation and Simulation of Random Processes and Fields , 2003, Multidimens. Syst. Signal Process..

[54]  Denis Talay,et al.  Simulation of stochastic differential systems , 1995 .

[55]  Shirley Dex,et al.  JR 旅客販売総合システム(マルス)における運用及び管理について , 1991 .

[56]  H. Triebel Theory Of Function Spaces , 1983 .

[57]  You‐Kuan Zhang Stochastic Methods for Flow in Porous Media: Coping with Uncertainties , 2001 .

[58]  Erik H. Vanmarcke,et al.  Random Fields: Analysis and Synthesis. , 1985 .