Genetic variation in GIPR influences the glucose and insulin responses to an oral glucose challenge
暂无分享,去创建一个
E. Zeggini | N. Grarup | M. Weedon | S. Bumpstead | A. Hingorani | G. Thorleifsson | V. Steinthorsdottir | D. Siscovick | E. Ingelsson | K. Mohlke | L. Bonnycastle | M. Erdos | H. Stringham | P. Chines | A. Swift | T. Valle | A. Doney | B. Voight | V. Lyssenko | B. Isomaa | T. Tuomi | B. Balkau | D. Meyre | J. Dupuis | H. Grallert | I. Prokopenko | S. Bielinski | Y. Böttcher | T. Johnson | P. Vollenweider | G. Waeber | J. Luan | Jinghua Zhao | N. Forouhi | C. Langenberg | N. Bouatia-Naji | A. Bonnefond | N. Glazer | Y. Aulchenko | M. Goodarzi | M. Kumari | H. Syddall | Gabriel J Crawford | F. Payne | T. Sparsø | C. Lecoeur | O. Bacquer | J. Delplanque | M. Hivert | A. Sandbaek | A. Sayer | R. Pakyz | L. Pascoe | M. Firmann | V. Mayor | J. Graessler | T. Jørgensen | M. Kivimaki | Toby Johnson | J. Pankow | Kijoung Song | A. Tönjes | Wolfgang Rathmann | Toshiko Tanaka | J. Mcateer | Christine Cavalcanti-Proença | Jing Hua Zhao | Narisu Narisu | J.-P. Delplanque | Toshiko Tanaka | M. Morken | A. Köttgen | Lu Qi | Alisa K Manning | Christian Dina | Jalal Taneera | Denis Rybin | Guillaume Charpentier | Josephine M. Egan | Richard N. Bergman | Stephen J. Sharp | A. Jackson | Colin N. A. Palmer | Andrew B. Singleton | C. Lévy‐Marchal | F. Pattou | W. H. Kao | Richa Saxena | Caroline S. Fox | Braxton D. Mitchell | Knut Krohn | Francis S. Collins | Eric J. G. Sijbrands | M. V. Hoek | Yii-Der I. Chen | Marilyn C. Cornelis | James S. Pankow | Man Li | Trine W Boesgaard | Peter Shrader | Jeffrey R. O'Connell | David J. Couper | Kenneth M. Rice | Kijoung Song | Camilla H Andreasen | François Pattou | Kristin Ardlie | Michael Sampson | K. Borch-Johnsen | Eric J. Brunner | Thomas A. Buchanan | Peter Kovacs | Torsten Lauritzen | Daniel Pearson | L. Scott | Nicholas L Smith | J. Tuomilehto | Andrew Walley | Dawn M. Waterworth | R. Bergman | Nicholas L Smith | Jeffrey R. O'Connell | Kristin G. Ardlie | P. Vollenweider | Torben Jørgensen | Trine W Boesgaard | Jeffrey R. O'Connell | Camilla H Andreasen | Michael Sampson | Y. I. Chen | A. Doney | Daniel Pearson | Laura J. Scott | Nicholas L. Smith | G. Waeber | Andrew Walley | José Dupuis
[1] P. Elliott,et al. New genetic loci implicated in fasting glucose homeostasis and their impact on type 2 diabetes risk , 2010, Nature Genetics.
[2] A. Singleton,et al. Genomewide association studies and human disease. , 2009, The New England journal of medicine.
[3] L. Groop,et al. Novel Genetic Loci Implicated in Fasting Glucose Homeostasis and Their Impact on Related Metabolic Traits , 2009 .
[4] Mark I McCarthy,et al. Type 2 diabetes: new genes, new understanding. , 2008, Trends in genetics : TIG.
[5] M. Rieder,et al. Common Missense Variant in the Glucokinase Regulatory Protein Gene Is Associated With Increased Plasma Triglyceride and C-Reactive Protein but Lower Fasting Glucose Concentrations , 2008, Diabetes.
[6] D. Lawlor,et al. Variations in the G6PC2/ABCB11 genomic region are associated with fasting glucose levels. , 2008, The Journal of clinical investigation.
[7] Jean Tichet,et al. A Polymorphism Within the G6PC2 Gene Is Associated with Fasting Plasma Glucose Levels , 2008, Science.
[8] T. Hansen,et al. Insulin sensitivity, insulin release and glucagon-like peptide-1 levels in persons with impaired fasting glucose and/or impaired glucose tolerance in the EUGENE2 study , 2008, Diabetologia.
[9] J. Girard,et al. Physiology of incretins (GIP and GLP-1) and abnormalities in type 2 diabetes. , 2008, Diabetes & metabolism.
[10] T. Nielsen,et al. The GCKR rs780094 polymorphism is associated with elevated fasting serum triacylglycerol, reduced fasting and OGTT-related insulinaemia, and reduced risk of type 2 diabetes , 2007, Diabetologia.
[11] Peter Almgren,et al. Mechanisms by which common variants in the TCF7L2 gene increase risk of type 2 diabetes. , 2007, The Journal of clinical investigation.
[12] Barbara Burwinkel,et al. Association analyses of GIP and GIPR polymorphisms with traits of the metabolic syndrome. , 2007, Molecular nutrition & food research.
[13] P. Donnelly,et al. A new multipoint method for genome-wide association studies by imputation of genotypes , 2007, Nature Genetics.
[14] D. Drucker. The role of gut hormones in glucose homeostasis. , 2007, The Journal of clinical investigation.
[15] M. Daly,et al. Evaluating and improving power in whole-genome association studies using fixed marker sets , 2006, Nature Genetics.
[16] H. Stefánsson,et al. Variant of transcription factor 7-like 2 (TCF7L2) gene confers risk of type 2 diabetes , 2006, Nature Genetics.
[17] M. Nauck,et al. The therapeutic actions of DPP-IV inhibition are not mediated by glucagon-like peptide-1 , 2005, Diabetologia.
[18] M. Hanefeld,et al. Postprandial glucose regulation and diabetic complications. , 2004, Archives of internal medicine.
[19] A. Monaco,et al. Analysis of the human VPS13 gene family. , 2004, Genomics.
[20] G. Pacini,et al. Importance of quantifying insulin secretion in relation to insulin sensitivity to accurately assess beta cell function in clinical studies. , 2004, European journal of endocrinology.
[21] P. Visscher,et al. Twin study of genetic and environmental influences on glucose tolerance and indices of insulin sensitivity and secretion , 2003, Diabetologia.
[22] J. Tuomilehto,et al. Post-challenge hyperglycaemia is associated with premature death and macrovascular complications , 2003, Diabetologia.
[23] Ralph B D'Agostino,et al. Fasting and postchallenge glycemia and cardiovascular disease risk: the Framingham Offspring Study. , 2002, Diabetes care.
[24] J. Holst,et al. Reduced insulinotropic effect of gastric inhibitory polypeptide in first-degree relatives of patients with type 2 diabetes. , 2001, Diabetes.
[25] J. Miyazaki,et al. Glucose intolerance caused by a defect in the entero-insular axis: a study in gastric inhibitory polypeptide receptor knockout mice. , 1999, Proceedings of the National Academy of Sciences of the United States of America.
[26] J. Habener,et al. Expression of Adenylyl Cyclase Subtypes in Pancreatic β-Cells , 1999 .
[27] R N Bergman,et al. Mapping Genes for NIDDM: Design of the Finland—United States Investigation of NIDDM Genetics (FUSION) Study , 1998, Diabetes Care.
[28] T. Hansen,et al. Discovery of amino acid variants in the human glucose-dependent insulinotropic polypeptide (GIP) receptor: the impact on the pancreatic beta cell responses and functional expression studies in Chinese hamster fibroblast cells , 1998, Diabetologia.
[29] J. Holst,et al. The pathogenesis of NIDDM involves a defective expression of the GIP receptor , 1997, Diabetologia.
[30] K. Tsuda,et al. Identification of Two Missense Mutations in the GIP Receptor Gene: A Functional Study and Association Analysis with NIDDM: No Evidence of Association with Japanese NIDDM Subjects , 1996, Diabetes.
[31] S Senn,et al. Analysis of serial measurements in medical research. , 1990, BMJ.
[32] R. Eaton,et al. Incretin effects of increasing glucose loads in man calculated from venous insulin and C-peptide responses. , 1986, The Journal of clinical endocrinology and metabolism.
[33] R. Turner,et al. Homeostasis model assessment: insulin resistance and β-cell function from fasting plasma glucose and insulin concentrations in man , 1985, Diabetologia.
[34] Inês Barroso,et al. Variants in MTNR1B influence fasting glucose levels , 2009, Nature Genetics.
[35] P. Elliott,et al. A variant near MTNR1B is associated with increased fasting plasma glucose levels and type 2 diabetes risk , 2009, Nature Genetics.
[36] J. Habener,et al. Expression of adenylyl cyclase subtypes in pancreatic beta-cells. , 1999, Biochemical and biophysical research communications.