Genetic variation in GIPR influences the glucose and insulin responses to an oral glucose challenge

E. Zeggini | N. Grarup | M. Weedon | S. Bumpstead | A. Hingorani | G. Thorleifsson | V. Steinthorsdottir | D. Siscovick | E. Ingelsson | K. Mohlke | L. Bonnycastle | M. Erdos | H. Stringham | P. Chines | A. Swift | T. Valle | A. Doney | B. Voight | V. Lyssenko | B. Isomaa | T. Tuomi | B. Balkau | D. Meyre | J. Dupuis | H. Grallert | I. Prokopenko | S. Bielinski | Y. Böttcher | T. Johnson | P. Vollenweider | G. Waeber | J. Luan | Jinghua Zhao | N. Forouhi | C. Langenberg | N. Bouatia-Naji | A. Bonnefond | N. Glazer | Y. Aulchenko | M. Goodarzi | M. Kumari | H. Syddall | Gabriel J Crawford | F. Payne | T. Sparsø | C. Lecoeur | O. Bacquer | J. Delplanque | M. Hivert | A. Sandbaek | A. Sayer | R. Pakyz | L. Pascoe | M. Firmann | V. Mayor | J. Graessler | T. Jørgensen | M. Kivimaki | Toby Johnson | J. Pankow | Kijoung Song | A. Tönjes | Wolfgang Rathmann | Toshiko Tanaka | J. Mcateer | Christine Cavalcanti-Proença | Jing Hua Zhao | Narisu Narisu | J.-P. Delplanque | Toshiko Tanaka | M. Morken | A. Köttgen | Lu Qi | Alisa K Manning | Christian Dina | Jalal Taneera | Denis Rybin | Guillaume Charpentier | Josephine M. Egan | Richard N. Bergman | Stephen J. Sharp | A. Jackson | Colin N. A. Palmer | Andrew B. Singleton | C. Lévy‐Marchal | F. Pattou | W. H. Kao | Richa Saxena | Caroline S. Fox | Braxton D. Mitchell | Knut Krohn | Francis S. Collins | Eric J. G. Sijbrands | M. V. Hoek | Yii-Der I. Chen | Marilyn C. Cornelis | James S. Pankow | Man Li | Trine W Boesgaard | Peter Shrader | Jeffrey R. O'Connell | David J. Couper | Kenneth M. Rice | Kijoung Song | Camilla H Andreasen | François Pattou | Kristin Ardlie | Michael Sampson | K. Borch-Johnsen | Eric J. Brunner | Thomas A. Buchanan | Peter Kovacs | Torsten Lauritzen | Daniel Pearson | L. Scott | Nicholas L Smith | J. Tuomilehto | Andrew Walley | Dawn M. Waterworth | R. Bergman | Nicholas L Smith | Jeffrey R. O'Connell | Kristin G. Ardlie | P. Vollenweider | Torben Jørgensen | Trine W Boesgaard | Jeffrey R. O'Connell | Camilla H Andreasen | Michael Sampson | Y. I. Chen | A. Doney | Daniel Pearson | Laura J. Scott | Nicholas L. Smith | G. Waeber | Andrew Walley | José Dupuis

[1]  P. Elliott,et al.  New genetic loci implicated in fasting glucose homeostasis and their impact on type 2 diabetes risk , 2010, Nature Genetics.

[2]  A. Singleton,et al.  Genomewide association studies and human disease. , 2009, The New England journal of medicine.

[3]  L. Groop,et al.  Novel Genetic Loci Implicated in Fasting Glucose Homeostasis and Their Impact on Related Metabolic Traits , 2009 .

[4]  Mark I McCarthy,et al.  Type 2 diabetes: new genes, new understanding. , 2008, Trends in genetics : TIG.

[5]  M. Rieder,et al.  Common Missense Variant in the Glucokinase Regulatory Protein Gene Is Associated With Increased Plasma Triglyceride and C-Reactive Protein but Lower Fasting Glucose Concentrations , 2008, Diabetes.

[6]  D. Lawlor,et al.  Variations in the G6PC2/ABCB11 genomic region are associated with fasting glucose levels. , 2008, The Journal of clinical investigation.

[7]  Jean Tichet,et al.  A Polymorphism Within the G6PC2 Gene Is Associated with Fasting Plasma Glucose Levels , 2008, Science.

[8]  T. Hansen,et al.  Insulin sensitivity, insulin release and glucagon-like peptide-1 levels in persons with impaired fasting glucose and/or impaired glucose tolerance in the EUGENE2 study , 2008, Diabetologia.

[9]  J. Girard,et al.  Physiology of incretins (GIP and GLP-1) and abnormalities in type 2 diabetes. , 2008, Diabetes & metabolism.

[10]  T. Nielsen,et al.  The GCKR rs780094 polymorphism is associated with elevated fasting serum triacylglycerol, reduced fasting and OGTT-related insulinaemia, and reduced risk of type 2 diabetes , 2007, Diabetologia.

[11]  Peter Almgren,et al.  Mechanisms by which common variants in the TCF7L2 gene increase risk of type 2 diabetes. , 2007, The Journal of clinical investigation.

[12]  Barbara Burwinkel,et al.  Association analyses of GIP and GIPR polymorphisms with traits of the metabolic syndrome. , 2007, Molecular nutrition & food research.

[13]  P. Donnelly,et al.  A new multipoint method for genome-wide association studies by imputation of genotypes , 2007, Nature Genetics.

[14]  D. Drucker The role of gut hormones in glucose homeostasis. , 2007, The Journal of clinical investigation.

[15]  M. Daly,et al.  Evaluating and improving power in whole-genome association studies using fixed marker sets , 2006, Nature Genetics.

[16]  H. Stefánsson,et al.  Variant of transcription factor 7-like 2 (TCF7L2) gene confers risk of type 2 diabetes , 2006, Nature Genetics.

[17]  M. Nauck,et al.  The therapeutic actions of DPP-IV inhibition are not mediated by glucagon-like peptide-1 , 2005, Diabetologia.

[18]  M. Hanefeld,et al.  Postprandial glucose regulation and diabetic complications. , 2004, Archives of internal medicine.

[19]  A. Monaco,et al.  Analysis of the human VPS13 gene family. , 2004, Genomics.

[20]  G. Pacini,et al.  Importance of quantifying insulin secretion in relation to insulin sensitivity to accurately assess beta cell function in clinical studies. , 2004, European journal of endocrinology.

[21]  P. Visscher,et al.  Twin study of genetic and environmental influences on glucose tolerance and indices of insulin sensitivity and secretion , 2003, Diabetologia.

[22]  J. Tuomilehto,et al.  Post-challenge hyperglycaemia is associated with premature death and macrovascular complications , 2003, Diabetologia.

[23]  Ralph B D'Agostino,et al.  Fasting and postchallenge glycemia and cardiovascular disease risk: the Framingham Offspring Study. , 2002, Diabetes care.

[24]  J. Holst,et al.  Reduced insulinotropic effect of gastric inhibitory polypeptide in first-degree relatives of patients with type 2 diabetes. , 2001, Diabetes.

[25]  J. Miyazaki,et al.  Glucose intolerance caused by a defect in the entero-insular axis: a study in gastric inhibitory polypeptide receptor knockout mice. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[26]  J. Habener,et al.  Expression of Adenylyl Cyclase Subtypes in Pancreatic β-Cells , 1999 .

[27]  R N Bergman,et al.  Mapping Genes for NIDDM: Design of the Finland—United States Investigation of NIDDM Genetics (FUSION) Study , 1998, Diabetes Care.

[28]  T. Hansen,et al.  Discovery of amino acid variants in the human glucose-dependent insulinotropic polypeptide (GIP) receptor: the impact on the pancreatic beta cell responses and functional expression studies in Chinese hamster fibroblast cells , 1998, Diabetologia.

[29]  J. Holst,et al.  The pathogenesis of NIDDM involves a defective expression of the GIP receptor , 1997, Diabetologia.

[30]  K. Tsuda,et al.  Identification of Two Missense Mutations in the GIP Receptor Gene: A Functional Study and Association Analysis with NIDDM: No Evidence of Association with Japanese NIDDM Subjects , 1996, Diabetes.

[31]  S Senn,et al.  Analysis of serial measurements in medical research. , 1990, BMJ.

[32]  R. Eaton,et al.  Incretin effects of increasing glucose loads in man calculated from venous insulin and C-peptide responses. , 1986, The Journal of clinical endocrinology and metabolism.

[33]  R. Turner,et al.  Homeostasis model assessment: insulin resistance and β-cell function from fasting plasma glucose and insulin concentrations in man , 1985, Diabetologia.

[34]  Inês Barroso,et al.  Variants in MTNR1B influence fasting glucose levels , 2009, Nature Genetics.

[35]  P. Elliott,et al.  A variant near MTNR1B is associated with increased fasting plasma glucose levels and type 2 diabetes risk , 2009, Nature Genetics.

[36]  J. Habener,et al.  Expression of adenylyl cyclase subtypes in pancreatic beta-cells. , 1999, Biochemical and biophysical research communications.