Conformations of star-branched macromolecules

Abstract The dimensions of star-branched macromolecules in dilute solutions were investigated using scaling concepts. The quality of the solvent, the rigidity of star branches, their number and degree of polymerization are taken into account. The relationship between the approaches based on scaling approximations and mean-field approximations is shown. The results obtained are compared to the data of Monte-Carlo simulations and other theoretical results.

[1]  F. L. McCrackin,et al.  Configuration properties of comb-branched polymers , 1981 .

[2]  P. Gennes Scaling Concepts in Polymer Physics , 1979 .

[3]  M. Daoud,et al.  Temperature-concentration diagram of polymer solutions , 1976 .

[4]  J. Meunier,et al.  Etude en solution diluée des propriétés du polystyrène ramifié en étoile , 1971 .

[5]  P. Flory,et al.  Relationship of the Second Virial Coefficient to Polymer Chain Dimensions and Interaction Parameters , 1957 .

[6]  A. M. Skvortsov,et al.  Structure of polymer solutions: scaling and modelling on an electronic computer , 1983 .

[7]  F. Candau,et al.  A New Theoretical Approach to the Problem of Solution Behavior of Branched Polymers , 1972 .

[8]  M. Daoud,et al.  Solutions of Flexible Polymers. Neutron Experiments and Interpretation , 1975 .

[9]  P. Flory Principles of polymer chemistry , 1953 .

[10]  B. Bauer,et al.  Star-branched polymers. 5. The .theta. temperature depression for 8- and 12-arm polyisoprenes in dioxane , 1980 .

[11]  J. Mazur,et al.  Configurational Properties of Star-Branched Polymers , 1977 .

[12]  S. Alexander,et al.  Adsorption of chain molecules with a polar head a scaling description , 1977 .

[13]  A. Khokhlov,et al.  Some problems of the statistical physics of polymer chains with volume interaction , 1978 .

[14]  A. R. Khokhlov Anomalous θ swelling of macromolecules: new method of calculation , 1981 .

[15]  J. Joanny,et al.  Dynamics of Semiflexible Polymers in Solution , 1980 .

[16]  A. Khokhlov Concept of quasimonomers and its application to some problems of polymer statistics , 1978 .

[17]  M. Daoud,et al.  Star shaped polymers : a model for the conformation and its concentration dependence , 1982 .

[18]  W. Stockmayer Solubility of Heterogeneous Polymers , 1949 .

[19]  P. G. de Gennes,et al.  Conformations of Polymers Attached to an Interface , 1980 .

[20]  J. Deutch,et al.  Behavior of polymer end‐to‐end distance in two dimensions at the theta point , 1981 .