On the local convergence of adjoint Broyden methods

The numerical solution of nonlinear equation systems is often achieved by so-called quasi-Newton methods. They preserve the rapid local convergence of Newton’s method at a significantly reduced cost per step by successively approximating the system Jacobian though low-rank updates. We analyze two variants of the recently proposed adjoint Broyden update, which for the first time combines the classical least change property with heredity on affine systems. However, the new update does require, the evaluation of so-called adjoint vectors, namely products of the transposed Jacobian with certain dual direction vectors. The resulting quasi-Newton method is linear contravariant in the sense of Deuflhard (Newton methods for nonlinear equations. Springer, Heidelberg, 2006) and it is shown here to be locally and q-superlinearly convergent. Our numerical results on a range of test problems demonstrate that the new method usually outperforms Newton’s and Broyden’s method in terms of runtime and iterations count, respectively.

[1]  C. G. Broyden A Class of Methods for Solving Nonlinear Simultaneous Equations , 1965 .

[2]  J. M. Bennett Triangular factors of modified matrices , 1965 .

[3]  C. G. Broyden Quasi-Newton methods and their application to function minimisation , 1967 .

[4]  William C. Davidon,et al.  Variance Algorithm for Minimization , 1968, Comput. J..

[5]  K. Brown A Quadratically Convergent Newton-Like Method Based Upon Gaussian-Elimination , 1968 .

[6]  C. G. Broyden,et al.  The convergence of an algorithm for solving sparse nonlinear systems , 1971 .

[7]  John E. Dennis,et al.  On the Local and Superlinear Convergence of Quasi-Newton Methods , 1973 .

[8]  J. J. Moré,et al.  A Characterization of Superlinear Convergence and its Application to Quasi-Newton Methods , 1973 .

[9]  R. Schnabel,et al.  Solving Systems of Non-Linear Equations by Broyden&Apos;S Method with Projected Updates , 1977 .

[10]  H. Schwetlick Numerische Lösung nichtlinearer Gleichungen , 1978 .

[11]  Michel Cosnard,et al.  Numerical Solution of Nonlinear Equations , 1979, TOMS.

[12]  W. Rheinboldt Schwetlick H., Numerische Lösung nichtlinearer Gleichungen. Berlin VEB Deutscher Verlag der Wissenschaften 1979. 346 S., 21 Abb., M 68,— , 1980 .

[13]  Jorge J. Moré,et al.  Testing Unconstrained Optimization Software , 1981, TOMS.

[14]  John E. Dennis,et al.  Numerical methods for unconstrained optimization and nonlinear equations , 1983, Prentice Hall series in computational mathematics.

[15]  A. Bunse-Gerstner,et al.  Numerische lineare Algebra , 1985 .

[16]  Anderas Griewank The “global” convergence of Broyden-like methods with suitable line search , 1986, The Journal of the Australian Mathematical Society. Series B. Applied Mathematics.

[17]  Nicholas I. M. Gould,et al.  Convergence of quasi-Newton matrices generated by the symmetric rank one update , 1991, Math. Program..

[18]  Dimitri P. Bertsekas,et al.  Nonlinear Programming , 1997 .

[19]  Andreas Griewank,et al.  Algorithm 755: ADOL-C: a package for the automatic differentiation of algorithms written in C/C++ , 1996, TOMS.

[20]  Stephen J. Wright,et al.  Numerical Optimization , 2018, Fundamental Statistical Inference.

[21]  Andreas Griewank,et al.  Evaluating derivatives - principles and techniques of algorithmic differentiation, Second Edition , 2000, Frontiers in applied mathematics.

[22]  Andreas Griewank,et al.  On constrained optimization by adjoint based quasi-Newton methods , 2002, Optim. Methods Softw..

[23]  Yousef Saad,et al.  Iterative methods for sparse linear systems , 2003 .

[24]  E. Haber Quasi-Newton methods for large-scale electromagnetic inverse problems , 2005 .

[25]  A. Griewank,et al.  Application of AD-based Quasi-Newton Methods to Stiff ODEs , 2006 .

[26]  Martin Bücker,et al.  Automatic differentiation : applications, theory, and implementations , 2006 .

[27]  A. Griewank,et al.  On the efficient update of rectangular LU-factorizations subject to low rank modifications. , 2007 .

[28]  Andreas Griewank,et al.  Optimal r-order of an adjoint Broyden method without the assumption of linearly independent steps , 2008, Optim. Methods Softw..

[29]  A. Walther,et al.  Global convergence of quasi-Newton methods based on adjoint Broyden updates , 2009 .