Imaging VEGF receptor expression to identify accelerated atherosclerosis

[1]  J. Hillebrands,et al.  Single-Chain VEGF/Cy5.5 Targeting VEGF Receptors to Indicate Atherosclerotic Plaque Instability , 2013, Molecular Imaging and Biology.

[2]  Yasuyoshi Watanabe,et al.  Detection of early stage atherosclerotic plaques using PET and CT fusion imaging targeting P-selectin in low density lipoprotein receptor-deficient mice. , 2013, Biochemical and biophysical research communications.

[3]  J. Tardif,et al.  Imaging atherosclerosis with hybrid [18F]fluorodeoxyglucose positron emission tomography/computed tomography imaging: What Leonardo da Vinci could not see , 2012, Journal of Nuclear Cardiology.

[4]  C. Reutelingsperger,et al.  Molecular Imaging to Identify the Vulnerable Plaque—From Basic Research to Clinical Practice , 2012, Molecular Imaging and Biology.

[5]  Marina V Backer,et al.  Molecular Imaging of Vascular Endothelial Growth Factor Receptors in Graft Arteriosclerosis , 2012, Arteriosclerosis, thrombosis, and vascular biology.

[6]  P. Libby,et al.  Molecular imaging of atherosclerosis for improving diagnostic and therapeutic development. , 2012, Circulation research.

[7]  G. Bergström,et al.  Increased vascularization of shoulder regions of carotid atherosclerotic plaques from patients with diabetes. , 2011, Journal of vascular surgery.

[8]  M. Gassmann,et al.  Hypoxia Is Present in Murine Atherosclerotic Plaques and Has Multiple Adverse Effects on Macrophage Lipid Metabolism , 2011, Circulation research.

[9]  J. Michel,et al.  Early Atheroma-Derived Agonists of Peroxisome Proliferator–Activated Receptor-&ggr; Trigger Intramedial Angiogenesis in a Smooth Muscle Cell–Dependent Manner , 2011, Circulation research.

[10]  F. Blankenberg,et al.  Targeted Systemic Radiotherapy with scVEGF/177Lu Leads to Sustained Disruption of the Tumor Vasculature and Intratumoral Apoptosis , 2011, The Journal of Nuclear Medicine.

[11]  B. Långström,et al.  Synthesis and characterization of scVEGF-PEG-[68Ga]NOTA and scVEGF-PEG-[68Ga]DOTA PET tracers , 2011 .

[12]  K. Ley,et al.  scVEGF Microbubble Ultrasound Contrast Agents: A Novel Probe for Ultrasound Molecular Imaging of Tumor Angiogenesis , 2010, Investigative radiology.

[13]  U. Haberkorn,et al.  ScVEGF-PEG-HBED-CC and scVEGF-PEG-NOTA conjugates: comparison of easy-to-label recombinant proteins for [68Ga]PET imaging of VEGF receptors in angiogenic vasculature. , 2010, Nuclear medicine and biology.

[14]  Ralph Weissleder,et al.  18F-4V for PET-CT imaging of VCAM-1 expression in atherosclerosis. , 2009, JACC. Cardiovascular imaging.

[15]  M. McConnell,et al.  Analysis of In Situ and Ex Vivo Vascular Endothelial Growth Factor Receptor Expression During Experimental Aortic Aneurysm Progression , 2009, Arteriosclerosis, thrombosis, and vascular biology.

[16]  A. Walch,et al.  Evaluation of &agr;v&bgr;3 Integrin-Targeted Positron Emission Tomography Tracer 18F-Galacto-RGD for Imaging of Vascular Inflammation in Atherosclerotic Mice , 2009, Circulation. Cardiovascular imaging.

[17]  J. Hillebrands,et al.  Atherosclerotic plaque development and instability: A dual role for VEGF , 2009, Annals of medicine.

[18]  A. Einstein,et al.  Development of Receptor for Advanced Glycation End Products–Directed Imaging of Atherosclerotic Plaque in a Murine Model of Spontaneous Atherosclerosis , 2008, Circulation. Cardiovascular imaging.

[19]  S. Soker,et al.  VEGF receptors and neuropilins are expressed in the urothelial and neuronal cells in normal mouse urinary bladder and are upregulated in inflammation. , 2008, American journal of physiology. Renal physiology.

[20]  F. Blankenberg,et al.  Direct site-specific labeling of the Cys-tag moiety in scVEGF with technetium 99m. , 2008, Bioconjugate chemistry.

[21]  A. Chait,et al.  Type 1 diabetes promotes disruption of advanced atherosclerotic lesions in LDL receptor-deficient mice , 2008, Proceedings of the National Academy of Sciences.

[22]  Marina V Backer,et al.  Molecular imaging of VEGF receptors in angiogenic vasculature with single-chain VEGF-based probes , 2007, Nature Medicine.

[23]  M. Laakso,et al.  VEGF‐A, VEGF‐D, VEGF receptor‐1, VEGF receptor‐2, NF‐KB, and RAGE in atherosclerotic lesions of diabetic Watanabe heritable hyperlipidemic rabbits , 2006, FASEB journal : official publication of the Federation of American Societies for Experimental Biology.

[24]  R. Virmani,et al.  Noninvasive imaging of atherosclerotic lesions in apolipoprotein E-deficient and low-density-lipoprotein receptor-deficient mice with annexin A5. , 2006, Journal of nuclear medicine : official publication, Society of Nuclear Medicine.

[25]  Aloke V. Finn,et al.  Atherosclerotic Plaque Progression and Vulnerability to Rupture: Angiogenesis as a Source of Intraplaque Hemorrhage , 2005, Arteriosclerosis, thrombosis, and vascular biology.

[26]  M. Dake,et al.  Effect of human recombinant vascular endothelial growth factor165 on progression of atherosclerotic plaque. , 2001, Journal of the American College of Cardiology.

[27]  M. Dake,et al.  Vascular endothelial growth factor enhances atherosclerotic plaque progression , 2001, Nature Medicine.

[28]  N. Ferrara,et al.  Analysis of Biological Effects and Signaling Properties of Flt-1 (VEGFR-1) and KDR (VEGFR-2) , 2001, The Journal of Biological Chemistry.

[29]  R. Virmani,et al.  Atherosclerotic plaque rupture in symptomatic carotid artery stenosis. , 1996, Journal of vascular surgery.

[30]  P. Perret,et al.  In Vivo Molecular Imaging of Atherosclerotic Lesions in ApoE-/-mice using VCAM-1-Specific , 99 m Tc-Labeled Peptidic Sequences , 2013 .

[31]  K. Nakagawa,et al.  Immunohistochemical expression of vascular endothelial growth factor/vascular permeability factor in atherosclerotic intimas of human coronary arteries. , 1999, Arteriosclerosis, thrombosis, and vascular biology.