High-dimensional Kuramoto models on Stiefel manifolds synchronize complex networks almost globally

The Kuramoto model of a system of coupled phase oscillators describe synchronization phenomena in nature. We propose a generalization of the Kuramoto model where each oscillator state lives on the compact, real Stiefel manifold St(p,n). Previous work on high-dimensional Kuramoto models have largely been influenced by results and techniques that pertain to the original model. This paper uses optimization and control theory to prove that the generalized Kuramoto model on St(p,n) converges to a completely synchronized state for any connected graph from almost all initial conditions provided (p,n) satisfies p<=2n/3-1 and all oscillator frequencies are equal. This result could not have been predicted based on knowledge of the Kuramoto model in complex networks on the circle with homogeneous oscillator frequencies. In that case, almost global synchronization is graph dependent; it applies if the network is acyclic or sufficiently dense. The problem of characterizing all such graphs is still open. This paper hence identifies a property that distinguishes many high-dimensional generalizations of the Kuramoto model from the original model. It should therefore have important implications for modeling of synchronization phenomena in physics and control of multi-agent systems in engineering applications.

[1]  Magnus Egerstedt,et al.  Graph Theoretic Methods in Multiagent Networks , 2010, Princeton Series in Applied Mathematics.

[2]  Lee DeVille,et al.  Synchronization and Stability for Quantum Kuramoto , 2018, Journal of Statistical Physics.

[3]  Fumin Zhang,et al.  Consensus on a sphere for a 3-dimensional speeding up and slowing down strategy , 2017, 2017 IEEE 56th Annual Conference on Decision and Control (CDC).

[4]  B. Piccoli,et al.  A nonlinear model of opinion formation on the sphere , 2015 .

[5]  Wei Li Collective Motion of Swarming Agents Evolving on a Sphere Manifold: A Fundamental Framework and Characterization , 2015, Scientific Reports.

[6]  Florian Dörfler,et al.  Synchronization in complex networks of phase oscillators: A survey , 2014, Autom..

[7]  M. A. Lohe,et al.  Higher-dimensional generalizations of the Watanabe–Strogatz transform for vector models of synchronization , 2018 .

[8]  E. Izhikevich,et al.  Weakly connected neural networks , 1997 .

[9]  Randy A. Freeman,et al.  A global attractor consisting of exponentially unstable equilibria , 2013, 2013 American Control Conference.

[10]  Alain Sarlette,et al.  Geometry and Symmetries in Coordination Control , 2009 .

[11]  René Vidal,et al.  Riemannian Consensus for Manifolds With Bounded Curvature , 2012, IEEE Transactions on Automatic Control.

[12]  Johan Thunberg,et al.  Almost Global Consensus on the $n$ -Sphere , 2016, IEEE Transactions on Automatic Control.

[13]  S. Strogatz,et al.  Constants of motion for superconducting Josephson arrays , 1994 .

[14]  M. A. Lohe Non-Abelian Kuramoto models and synchronization , 2009 .

[15]  L. Tu An introduction to manifolds , 2007 .

[16]  Seung‐Yeal Ha,et al.  On the Relaxation Dynamics of Lohe Oscillators on Some Riemannian Manifolds , 2018, Journal of Statistical Physics.

[17]  I. Couzin,et al.  Collective memory and spatial sorting in animal groups. , 2002, Journal of theoretical biology.

[18]  Xiaoming Hu,et al.  Intrinsic reduced attitude formation with ring inter-agent graph , 2017, Autom..

[19]  Pablo Monzón,et al.  Exotic equilibria of Harary graphs and a new minimum degree lower bound for synchronization. , 2015, Chaos.

[20]  Nastassia Pouradier Duteil,et al.  Opinion dynamics on a general compact Riemannian manifold , 2017, Networks Heterog. Media.

[21]  R. Olfati-Saber,et al.  Swarms on Sphere: A Programmable Swarm with Synchronous Behaviors like Oscillator Networks , 2006, Proceedings of the 45th IEEE Conference on Decision and Control.

[22]  Johan Thunberg,et al.  Dynamic controllers for column synchronization of rotation matrices: a QR-factorization approach , 2018, Autom..

[23]  Florian Dörfler,et al.  Algebraic geometrization of the Kuramoto model: Equilibria and stability analysis. , 2014, Chaos.

[24]  Zhiyong Sun,et al.  Consensus on spheres: Convergence analysis and perturbation theory , 2016, 2016 IEEE 55th Conference on Decision and Control (CDC).

[25]  Wei Li,et al.  Corrigendum: Collective Motion of Swarming Agents Evolving on a Sphere Manifold: A Fundamental Framework and Characterization , 2015, Scientific Reports.

[26]  Takuma Tanaka,et al.  Solvable model of the collective motion of heterogeneous particles interacting on a sphere , 2014, 1401.3109.

[27]  Eduardo Alberto Canale,et al.  Gluing Kuramoto coupled oscillators networks , 2007, 2007 46th IEEE Conference on Decision and Control.

[28]  M. A. Lohe Quantum synchronization over quantum networks , 2010 .

[29]  Thomas Caraco,et al.  Avian flocking in the presence of a predator , 1980, Nature.

[30]  Johan Thunberg,et al.  Lifting method for analyzing distributed synchronization on the unit sphere , 2018, Autom..

[31]  Jurgen Kurths,et al.  Synchronization in complex networks , 2008, 0805.2976.

[32]  Alan Edelman,et al.  The Geometry of Algorithms with Orthogonality Constraints , 1998, SIAM J. Matrix Anal. Appl..

[33]  Toshihisa Tanaka,et al.  Empirical Arithmetic Averaging Over the Compact Stiefel Manifold , 2013, IEEE Transactions on Signal Processing.

[34]  Alain Sarlette,et al.  Synchronization and balancing on the N-torus , 2007, Syst. Control. Lett..

[35]  Wei Li,et al.  Unified Cooperative Control of Multiple Agents on a Sphere for Different Spherical Patterns , 2014, IEEE Transactions on Automatic Control.

[36]  Alexander Graham,et al.  Kronecker Products and Matrix Calculus: With Applications , 1981 .

[37]  Chunjiang Qian,et al.  On Equilibria and Consensus of the Lohe Model with Identical Oscillators , 2018, SIAM J. Appl. Dyn. Syst..

[38]  Pierre-Antoine Absil,et al.  On the stable equilibrium points of gradient systems , 2006, Syst. Control. Lett..

[39]  Thomas K. D. M. Peron,et al.  The Kuramoto model in complex networks , 2015, 1511.07139.

[40]  Feng Qian,et al.  Synchronization in complex networks and its application - A survey of recent advances and challenges , 2014, Annu. Rev. Control..

[41]  Fèlix Ritort Farran Solvable dynamics in a system of interacting random tops , 1998 .

[42]  Jian‐Guo Liu,et al.  Long-Time Dynamics for a Simple Aggregation Equation on the Sphere , 2017, Stochastic Dynamics Out of Equilibrium.

[43]  S. Bhat,et al.  A topological obstruction to continuous global stabilization of rotational motion and the unwinding phenomenon , 2000 .

[44]  René Vidal,et al.  Intrinsic consensus on SO(3) with almost-global convergence , 2012, 2012 IEEE 51st IEEE Conference on Decision and Control (CDC).

[45]  Vladimir Jacimovic,et al.  Swarms on the 3-sphere with adaptive synapses: Hebbian and anti-Hebbian learning rule , 2018, Syst. Control. Lett..

[46]  Johan Markdahl,et al.  Rigid-Body Attitude Control and Related Topics , 2015 .

[47]  Ioan Mackenzie James,et al.  The topology of Stiefel manifolds , 1976 .

[48]  E. Ott,et al.  Continuous versus Discontinuous Transitions in the D -Dimensional Generalized Kuramoto Model: Odd D is Different , 2018, Physical Review X.

[49]  Alain Sarlette,et al.  Consensus Optimization on Manifolds , 2008, SIAM J. Control. Optim..

[50]  U. Helmke,et al.  Optimization and Dynamical Systems , 1994, Proceedings of the IEEE.

[51]  Johan Thunberg,et al.  Towards Almost Global Synchronization on the Stiefel Manifold , 2018, 2018 IEEE Conference on Decision and Control (CDC).

[52]  Naomi Ehrich Leonard,et al.  Autonomous rigid body attitude synchronization , 2007, 2007 46th IEEE Conference on Decision and Control.

[53]  N. J. A. Sloane,et al.  Packing Lines, Planes, etc.: Packings in Grassmannian Spaces , 1996, Exp. Math..

[54]  Charles R. Johnson,et al.  Matrix analysis , 1985, Statistical Inference for Engineers and Data Scientists.

[55]  Alain Sarlette,et al.  Consensus for Quantum Networks: Symmetry From Gossip Interactions , 2013, IEEE Transactions on Automatic Control.

[56]  Derek A. Paley,et al.  Stabilization of collective motion on a sphere , 2009, Autom..

[57]  D K Smith,et al.  Numerical Optimization , 2001, J. Oper. Res. Soc..

[58]  M. Tismenetsky,et al.  Kronecker Products and Matrix Calculus (Alexander Graham) , 1983 .

[59]  Jiandong Zhu Synchronization of Kuramoto model in a high-dimensional linear space , 2013 .

[60]  Seung‐Yeal Ha,et al.  Emergent behaviors of a holonomic particle system on a sphere , 2014 .

[61]  Robert E. Mahony,et al.  Optimization Algorithms on Matrix Manifolds , 2007 .

[62]  Rodolphe Sepulchre,et al.  Consensus on nonlinear spaces , 2010, Annu. Rev. Control..