Mobile Volume Rendering: Past, Present and Future

Volume rendering has been a relevant topic in scientific visualization for the last decades. However, the exploration of reasonably big volume datasets requires considerable computing power, which has limited this field to the desktop scenario. But the recent advances in mobile graphics hardware have motivated the research community to overcome these restrictions and to bring volume graphics to these ubiquitous handheld platforms. This survey presents the past and present work on mobile volume rendering, and is meant to serve as an overview and introduction to the field. It proposes a classification of the current efforts and covers aspects such as advantages and issues of the mobile platforms, rendering strategies, performance and user interfaces. The paper ends by highlighting promising research directions to motivate the development of new and interesting mobile volume solutions.

[1]  Rafael Jesús Segura,et al.  Volume Rendering Strategies on Mobile Devices , 2016, GRAPP/IVAPP.

[2]  Yen-Chun Jim Wu,et al.  Review of trends from mobile learning studies: A meta-analysis , 2012, Comput. Educ..

[3]  J. T. Murchison,et al.  Radiology smartphone applications; current provision and cautions , 2013, Insights into Imaging.

[4]  Arie E. Kaufman,et al.  Interactive wireless virtual colonoscopy , 2007, The Visual Computer.

[5]  Mark Billinghurst,et al.  Virtual object manipulation using a mobile phone , 2005, ICAT '05.

[6]  Jens H. Krüger,et al.  Evaluation of Interactive Visualization on Mobile Computing Platforms for Selection of Deep Brain Stimulation Parameters , 2013, IEEE Transactions on Visualization and Computer Graphics.

[7]  Boris Rubinsky,et al.  Distributed Network, Wireless and Cloud Computing Enabled 3-D Ultrasound; a New Medical Technology Paradigm , 2009, PloS one.

[8]  Joel J. P. C. Rodrigues,et al.  Survey and analysis of current mobile learning applications and technologies , 2013, ACM Comput. Surv..

[9]  Insung Ihm,et al.  Mobile collaborative medical display system , 2008, Comput. Methods Programs Biomed..

[10]  Abigail Sellen,et al.  A study in interactive 3-D rotation using 2-D control devices , 1988, SIGGRAPH.

[11]  Pere-Pau Vázquez,et al.  Practical Volume Rendering in Mobile Devices , 2012, ISVC.

[12]  Marek R. Ogiela,et al.  Visualization of perfusion abnormalities with GPU-based volume rendering , 2012, Comput. Graph..

[13]  Joe Michael Kniss,et al.  Multidimensional Transfer Functions for Interactive Volume Rendering , 2002, IEEE Trans. Vis. Comput. Graph..

[14]  Ji Hwan Park,et al.  Remote volume rendering pipeline for mHealth applications , 2014, Medical Imaging.

[15]  Juan Carlos Torres,et al.  Interaction and visualization of 3D virtual environments on mobile devices , 2012, Personal and Ubiquitous Computing.

[16]  Gordon L. Kindlmann,et al.  Semi-Automatic Generation of Transfer Functions for Direct Volume Rendering , 1998, VVS.

[17]  James E. Fowler,et al.  Lossless compression of volume data , 1994, VVS '94.

[18]  Juan José Jiménez-Delgado,et al.  Development and evaluation of a 3D mobile application for learning manual therapy in the physiotherapy laboratory , 2013, Comput. Educ..

[19]  Insung Ihm,et al.  Wavelet‐Based 3D Compression Scheme for Interactive Visualization of Very Large Volume Data , 1999, Comput. Graph. Forum.

[20]  Timo Koskela,et al.  Optimization Techniques for 3D Graphics Deployment on Mobile Devices , 2015 .

[21]  Bernhard Preim,et al.  From individual to population: Challenges in Medical Visualization , 2012, Scientific Visualization.

[22]  Tolga K. Çapin,et al.  Dual-Finger 3D Interaction Techniques for mobile devices , 2012, Personal and Ubiquitous Computing.

[23]  Renato Pajarola,et al.  State‐of‐the‐Art in Compressed GPU‐Based Direct Volume Rendering , 2014, Comput. Graph. Forum.

[24]  Marc Levoy,et al.  Display of surfaces from volume data , 1988, IEEE Computer Graphics and Applications.

[25]  Manuel Moser,et al.  Interactive Volume Rendering on Mobile Devices , 2008 .

[26]  D. Holdstock Past, present--and future? , 2005, Medicine, conflict, and survival.

[27]  Andrea Sanna,et al.  A Streaming-Based Solution for Remote Visualization of 3D Graphics on Mobile Devices , 2007, IEEE Transactions on Visualization and Computer Graphics.

[28]  Tomas Akenine-Möller,et al.  Graphics Processing Units for Handhelds , 2008, Proc. IEEE.

[29]  Hong Zhou,et al.  Volume Visualization on Mobile Devices , 2006 .

[30]  Markus Hadwiger,et al.  Real-time volume graphics , 2006, Eurographics.

[31]  Tomas Akenine-Möller,et al.  The State of the Art in Mobile Graphics Research , 2008, IEEE Computer Graphics and Applications.

[32]  Pere Pau Vázquez Alcocer,et al.  Practical Volume Rendering in Mobile Devices , 2012, ISVC 2012.

[33]  Andrea Sanna,et al.  A solution for displaying medical data models on mobile devices , 2005, ICSE 2005.

[34]  Ioana M. Boier Martin Adaptive rendering of 3D models over net-works using multiple modalities , 2000 .

[35]  Elliot K. Fishman,et al.  The iPad as a mobile device for CT display and interpretation: diagnostic accuracy for identification of pulmonary embolism , 2012, Emergency Radiology.

[36]  William E. Lorensen,et al.  The Transfer Function Bake-Off , 2001, IEEE Computer Graphics and Applications.

[37]  Tomasz Hachaj Real time exploration and management of large medical volumetric datasets on small mobile devices - Evaluation of remote volume rendering approach , 2014, Int. J. Inf. Manag..

[38]  Juan-Roberto Jiménez,et al.  Visualization of Very Large 3 D Volumes on Mobile Devices and WebGL , 2012 .

[39]  Rüdiger Westermann,et al.  Acceleration techniques for GPU-based volume rendering , 2003, IEEE Visualization, 2003. VIS 2003..

[40]  Christian John Noon,et al.  A volume rendering engine for desktops, laptops, mobile devices and immersive virtual reality systems using gpu-based volume raycasting , 2012 .

[41]  Roberto Scopigno,et al.  Multiresolution volume visualization with a texture-based octree , 2001, The Visual Computer.

[42]  Bernd Hamann,et al.  Multiresolution techniques for interactive texture-based volume visualization , 1999, Proceedings Visualization '99 (Cat. No.99CB37067).

[43]  R. Trelease Diffusion of innovations: Smartphones and wireless anatomy learning resources , 2008, Anatomical sciences education.

[44]  Pere Brunet,et al.  Interactive visualization of medical volume models in mobile devices , 2012, Personal and Ubiquitous Computing.

[45]  Feng Lin,et al.  On-Site Volume Rendering with GPU-Enabled Devices , 2014, Wirel. Pers. Commun..

[46]  Elmar Kotter,et al.  Technologies for image distribution in hospitals , 2006, European Radiology.

[47]  Dragan Ivetic,et al.  Medical Image on the Go! , 2011, Journal of Medical Systems.

[48]  M. Bauer,et al.  Interactive volume on standard PC graphics hardware using multi-textures and multi-stage rasterization , 2000, Workshop on Graphics Hardware.

[49]  Simon Fenney,et al.  Texture compression using low-frequency signal modulation , 2003, HWWS '03.

[50]  Josep Blat,et al.  3D graphics on the web: A survey , 2014, Comput. Graph..

[51]  Lin Feng,et al.  Ubiquitous medical volume rendering on mobile devices , 2012, International Conference on Information Society (i-Society 2012).

[52]  Aitor Moreno,et al.  Interactive visualization of volumetric data with WebGL in real-time , 2011, Web3D '11.