Entropy Numbers of Embeddings of Besov Spaces in Generalized Lipschitz Spaces

We establish two-sided estimates for entropy numbers of embeddings between certain weighted Banach sequence spaces with mixed norms. These estimates are ''almost'' sharp, in the sense that upper and lower bounds differ only by logarithmic terms and improve previous results by D. E. Edmunds and D. Haroske (1999, Dissertationes Math.380, 1-43; 2000, J. Approx. Theory104, 226-271). As an application we obtain also new upper entropy estimates for embeddings of Besov spaces in generalized Lipschitz spaces.

[1]  γ‐Radonifying operators and entropy ideals , 1982 .

[2]  A. Pietsch Eigenvalue distribution of compact operators , 1986 .

[3]  C. Schütt,et al.  Geometric and probabilistic estimates for entropy and approximation numbers of operators , 1987 .

[4]  T. Kühn,et al.  Entropy Numbers of Diagonal Operators between Vector‐Valued Sequence Spaces , 2001 .

[5]  M. Talagrand,et al.  Probability in Banach spaces , 1991 .

[6]  D. Edmunds,et al.  Embeddings in Spaces of Lipschitz Type, Entropy and Approximation Numbers, and Applications , 2000 .

[7]  C. Schütt Entropy numbers of diagonal operators between symmetric Banach spaces , 1984 .

[8]  H. Triebel Fractals and spectra , 1997 .

[9]  Haim Brezis,et al.  A note on limiting cases of sobolev embeddings and convolution inequalities , 1980 .

[10]  G. Pólya,et al.  Aufgaben und Lehrsätze aus der Analysis , 1926, Mathematical Gazette.

[11]  H. Triebel Interpolation Theory, Function Spaces, Differential Operators , 1978 .

[12]  D. Edmunds,et al.  Spaces of Lipschitz type, embeddings and entropy numbers , 1999 .

[13]  G. Pisier The volume of convex bodies and Banach space geometry , 1989 .

[14]  Dualité des nombres d'entropie pour des opérateurs à valeurs dans un espace de Hilbert , 1987 .

[15]  Werner Linde,et al.  Mappings of Gaussian Cylindrical Measures in Banach Spaces , 1975 .

[16]  Fuchang Gao Metric entropy of convex hulls , 2001 .

[17]  B. Carl Entropy numbers of diagonal operators with an application to eigenvalue problems , 1981 .

[18]  Thomas Kühn,et al.  A Lower Estimate for Entropy Numbers , 2001, J. Approx. Theory.