Laminar specific fMRI reveals directed interactions in distributed networks during language processing

Laminar resolution, functional magnetic resonance imaging (lfMRI) is a noninvasive technique with the potential to distinguish top-down and bottom-up signal contributions on the basis of laminar specific interactions between distal regions. Hitherto, lfMRI could not be demonstrated for either whole-brain distributed networks or for complex cognitive tasks. We show that lfMRI can reveal whole-brain directed networks during word reading. We identify distinct, language critical regions based on their association with the top-down signal stream and establish lfMRI for the noninvasive assessment of directed connectivity during task performance.

[1]  Nikos K Logothetis,et al.  Laminar specificity in monkey V1 using high-resolution SE-fMRI. , 2006, Magnetic resonance imaging.

[2]  Sterling C. Johnson,et al.  A generalized form of context-dependent psychophysiological interactions (gPPI): A comparison to standard approaches , 2012, NeuroImage.

[3]  Jonathan R. Polimeni,et al.  Laminar (f)MRI: A short history and future prospects , 2019, NeuroImage.

[4]  N. Logothetis,et al.  High-Resolution fMRI Reveals Laminar Differences in Neurovascular Coupling between Positive and Negative BOLD Responses , 2012, Neuron.

[5]  K. Brodmann Vergleichende Lokalisationslehre der Großhirnrinde : in ihren Prinzipien dargestellt auf Grund des Zellenbaues , 1985 .

[6]  Andrea Bergmann,et al.  Statistical Parametric Mapping The Analysis Of Functional Brain Images , 2016 .

[7]  Junjie Liu,et al.  Laminar profiles of functional activity in the human brain , 2007, NeuroImage.

[8]  Markus Barth,et al.  A cortical vascular model for examining the specificity of the laminar BOLD signal , 2016, NeuroImage.

[9]  Andrew W. Kraft,et al.  Spontaneous Infra-slow Brain Activity Has Unique Spatiotemporal Dynamics and Laminar Structure , 2018, Neuron.

[10]  Timothy E. J. Behrens,et al.  Tools of the trade: psychophysiological interactions and functional connectivity. , 2012, Social cognitive and affective neuroscience.

[11]  R. Goebel,et al.  Frequency preference and attention effects across cortical depths in the human primary auditory cortex , 2015, Proceedings of the National Academy of Sciences.

[12]  S. Dehaene,et al.  Language-specific tuning of visual cortex? Functional properties of the Visual Word Form Area. , 2002, Brain : a journal of neurology.

[13]  Samuel J. D. Lawrence,et al.  Laminar Organization of Working Memory Signals in Human Visual Cortex , 2018, Current Biology.

[14]  Blair C. Armstrong,et al.  The what, when, where, and how of visual word recognition , 2014, Trends in Cognitive Sciences.

[15]  Ray Jackendoff,et al.  What’s in the Lexicon? , 2002 .

[16]  Lawrence L. Wald,et al.  Three dimensional echo-planar imaging at 7 Tesla , 2010, NeuroImage.

[17]  Afonso C. Silva,et al.  Laminar specificity of functional MRI onset times during somatosensory stimulation in rat , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[18]  Lawrence L. Wald,et al.  Laminar analysis of 7T BOLD using an imposed spatial activation pattern in human V1 , 2010, NeuroImage.

[19]  S. Dehaene,et al.  The visual word form area: a prelexical representation of visual words in the fusiform gyrus , 2002, Neuroreport.

[20]  Tobias Kober,et al.  MP2RAGE, a self bias-field corrected sequence for improved segmentation and T1-mapping at high field , 2010, NeuroImage.

[21]  Tao Jin,et al.  Cortical layer-dependent dynamic blood oxygenation, cerebral blood flow and cerebral blood volume responses during visual stimulation , 2008, NeuroImage.

[22]  Tobias U. Hauser,et al.  The PhysIO Toolbox for Modeling Physiological Noise in fMRI Data , 2017, Journal of Neuroscience Methods.

[23]  Cathy J. Price,et al.  A review and synthesis of the first 20 years of PET and fMRI studies of heard speech, spoken language and reading , 2012, NeuroImage.

[24]  K. Uğurbil,et al.  Microvascular BOLD contribution at 4 and 7 T in the human brain: Gradient‐echo and spin‐echo fMRI with suppression of blood effects , 2003, Magnetic resonance in medicine.

[25]  Karl J. Friston,et al.  Canonical Microcircuits for Predictive Coding , 2012, Neuron.

[26]  R. Goebel,et al.  Cortical Depth Dependent Functional Responses in Humans at 7T: Improved Specificity with 3D GRASE , 2013, PloS one.

[27]  Peter Hagoort,et al.  MUC (Memory, Unification, Control) and beyond , 2013, Front. Psychol..

[28]  Peter J. Molfese,et al.  Layer-dependent activity in human prefrontal cortex during working memory , 2019, Nature Neuroscience.

[29]  C. Economo,et al.  Die Cytoarchitektonik der Hirnrinde des erwachsenen Menschen , 1925 .

[30]  K. Uğurbil,et al.  Spin‐echo fMRI in humans using high spatial resolutions and high magnetic fields , 2003, Magnetic resonance in medicine.

[31]  K. Uğurbil,et al.  Diffusion‐weighted spin‐echo fMRI at 9.4 T: Microvascular/tissue contribution to BOLD signal changes , 1999, Magnetic resonance in medicine.

[32]  Thomas T. Liu,et al.  An arteriolar compliance model of the cerebral blood flow response to neural stimulus , 2005, NeuroImage.

[33]  Seong-Gi Kim,et al.  Cortical layer-dependent arterial blood volume changes: Improved spatial specificity relative to BOLD fMRI , 2010, NeuroImage.

[34]  J. Hyde,et al.  Spatial correlations of laminar BOLD and CBV responses to rat whisker stimulation with neuronal activity localized by Fos expression , 2004, Magnetic resonance in medicine.

[35]  F. D. Lange,et al.  Selective Activation of the Deep Layers of the Human Primary Visual Cortex by Top-Down Feedback , 2016, Current Biology.

[36]  P. Kara,et al.  Neural correlates of single vessel hemodynamic responses in vivo , 2016, Nature.

[37]  R W Cox,et al.  AFNI: software for analysis and visualization of functional magnetic resonance neuroimages. , 1996, Computers and biomedical research, an international journal.

[38]  H. Barbas General cortical and special prefrontal connections: principles from structure to function. , 2015, Annual review of neuroscience.

[39]  Seong-Gi Kim,et al.  Functional MRI of calcium‐dependent synaptic activity: Cross correlation with CBF and BOLD measurements , 2000, Magnetic resonance in medicine.

[40]  Wietske van der Zwaag,et al.  Ultra-high field MRI: Advancing systems neuroscience towards mesoscopic human brain function , 2017, NeuroImage.

[41]  Pierre-Louis Bazin,et al.  Laminar signal extraction over extended cortical areas by means of a spatial GLM , 2018, bioRxiv.

[42]  Essa Yacoub,et al.  Sensitivity and specificity considerations for fMRI encoding, decoding, and mapping of auditory cortex at ultra-high field , 2018, NeuroImage.

[43]  David G Norris,et al.  Improved cortical boundary registration for locally distorted fMRI scans , 2018, bioRxiv.

[44]  Peter Hagoort,et al.  Retrieval and unification of syntactic structure in sentence comprehension: an FMRI study using word-category ambiguity. , 2009, Cerebral cortex.

[45]  Jed A. Meltzer,et al.  Interhemispheric connectivity during lateralized lexical decision , 2018, Human brain mapping.

[46]  R. Douglas,et al.  Mapping the Matrix: The Ways of Neocortex , 2007, Neuron.

[47]  A. Campbell Histological Studies on the Localisation of Cerebral Function , 2009 .

[48]  K. Rockland,et al.  Laminar origins and terminations of cortical connections of the occipital lobe in the rhesus monkey , 1979, Brain Research.

[49]  D. Norris,et al.  Layer‐specific BOLD activation in human V1 , 2010, Human brain mapping.

[50]  Laurentius Huber,et al.  High-Resolution CBV-fMRI Allows Mapping of Laminar Activity and Connectivity of Cortical Input and Output in Human M1 , 2017, Neuron.

[51]  Robert Turner,et al.  Investigation of the neurovascular coupling in positive and negative BOLD responses in human brain at 7T , 2014, NeuroImage.

[52]  Essa Yacoub,et al.  Variable flip angle 3D‐GRASE for high resolution fMRI at 7 tesla , 2016, Magnetic resonance in medicine.

[53]  G. Smith,et al.  Die Cytoarchitektonik der Hirnrinde des erwachsenen Menschen. , 1927 .

[54]  Claudine Joëlle Gauthier,et al.  Cortical lamina-dependent blood volume changes in human brain at 7T , 2015, NeuroImage.

[55]  D. J. Felleman,et al.  Distributed hierarchical processing in the primate cerebral cortex. , 1991, Cerebral cortex.

[56]  Marc Brysbaert,et al.  Wuggy: A multilingual pseudoword generator , 2010, Behavior research methods.

[57]  Seong-Gi Kim,et al.  Arterial versus Total Blood Volume Changes during Neural Activity-Induced Cerebral Blood Flow Change: Implication for BOLD fMRI , 2007, Journal of cerebral blood flow and metabolism : official journal of the International Society of Cerebral Blood Flow and Metabolism.

[58]  Frank Wijnen,et al.  Storage and Computation in the Language Faculty , 2002 .

[59]  Anders M. Dale,et al.  Depth-resolved optical imaging and microscopy of vascular compartment dynamics during somatosensory stimulation , 2007, NeuroImage.

[60]  D. Kleinfeld,et al.  Suppressed Neuronal Activity and Concurrent Arteriolar Vasoconstriction May Explain Negative Blood Oxygenation Level-Dependent Signal , 2007, The Journal of Neuroscience.

[61]  J. Polimeni,et al.  Blipped‐controlled aliasing in parallel imaging for simultaneous multislice echo planar imaging with reduced g‐factor penalty , 2012, Magnetic resonance in medicine.

[62]  A M Dale,et al.  Optimal experimental design for event‐related fMRI , 1999, Human brain mapping.

[63]  Bruce Fischl,et al.  FreeSurfer , 2012, NeuroImage.

[64]  Steen Moeller,et al.  Combined imaging–histological study of cortical laminar specificity of fMRI signals , 2006, NeuroImage.

[65]  René Scheeringa,et al.  The relationship between oscillatory EEG activity and the laminar-specific BOLD signal , 2016, Proceedings of the National Academy of Sciences.

[66]  Karl J. Friston,et al.  Psychophysiological and Modulatory Interactions in Neuroimaging , 1997, NeuroImage.

[67]  N. Logothetis,et al.  Spatial Specificity of BOLD versus Cerebral Blood Volume fMRI for Mapping Cortical Organization , 2007, Journal of cerebral blood flow and metabolism : official journal of the International Society of Cerebral Blood Flow and Metabolism.

[68]  Lucy S. Petro,et al.  Contextual Feedback to Superficial Layers of V1 , 2015, Current Biology.

[69]  Pierre-Louis Bazin,et al.  Anatomically motivated modeling of cortical laminae , 2014, NeuroImage.

[70]  N. Logothetis,et al.  The Effect of Labeling Parameters on Perfusion-Based fMRI in Nonhuman Primates , 2008, Journal of cerebral blood flow and metabolism : official journal of the International Society of Cerebral Blood Flow and Metabolism.

[71]  Kathleen S. Rockland,et al.  What do we know about laminar connectivity? , 2017, NeuroImage.

[72]  C. Price,et al.  The Interactive Account of ventral occipitotemporal contributions to reading , 2011, Trends in Cognitive Sciences.

[73]  K. Uğurbil,et al.  Layer-Specific fMRI Reflects Different Neuronal Computations at Different Depths in Human V1 , 2012, PloS one.

[74]  P. Goldman-Rakic,et al.  Preface: Cerebral Cortex Has Come of Age , 1991 .

[75]  Robin M Heidemann,et al.  Controlled aliasing in parallel imaging results in higher acceleration (CAIPIRINHA) for multi‐slice imaging , 2005, Magnetic resonance in medicine.

[76]  R. Douglas,et al.  Neuronal circuits of the neocortex. , 2004, Annual review of neuroscience.