A Geometrically Nonlinear Nine-Node Solid Shell Element Formulation with Reduced Sensitivity to Mesh Distortion

A geometrically nonlinear assumed strain formulation is introduced in conjunction with bubble function displacements to improve the performance of a nine-node solid shell element. The assumed strain field has been carefully selected to avoid both element locking and undesirable spurious kinematic modes. The results of numerical tests demonstrate that the present approach leads to an element that is significantly less sensitive to mesh distortion than the existing element. keyword: assumed strain formulation, solid shell element, geometrically nonlinear, and bubble function

[1]  S. Lee,et al.  An eighteen‐node solid element for thin shell analysis , 1988 .

[2]  J. C. Simo,et al.  On a stress resultant geometrically exact shell model , 1990 .

[3]  Theodore H. H. Pian,et al.  Improvement of Plate and Shell Finite Elements by Mixed Formulations , 1977 .

[4]  S. Lee,et al.  A solid element formulation for large deflection analysis of composite shell structures , 1988 .

[5]  E. Ramm,et al.  Three‐dimensional extension of non‐linear shell formulation based on the enhanced assumed strain concept , 1994 .

[6]  E. Stein,et al.  An assumed strain approach avoiding artificial thickness straining for a non‐linear 4‐node shell element , 1995 .

[7]  J. C. Simo,et al.  On a stress resultant geometrically exact shell model. Part III: computational aspects of the nonlinear theory , 1990 .

[8]  Rakesh K. Kapania,et al.  A survey of recent shell finite elements , 2000 .

[9]  Jong Hoon Kim,et al.  An assumed strain formulation of efficient solid triangular element for general shell analysis , 2000 .

[10]  H. C. Park,et al.  A local coordinate system for assumed strain shell element formulation , 1995 .

[11]  S. N. Atluri,et al.  Analysis of shear flexible beams, using the meshless local Petrov‐Galerkin method, based on a locking‐free formulation , 2001 .

[12]  Peter M. Pinsky,et al.  A mixed finite element formulation for Reissner–Mindlin plates based on the use of bubble functions , 1989 .

[13]  Ekkehard Ramm,et al.  EAS‐elements for two‐dimensional, three‐dimensional, plate and shell structures and their equivalence to HR‐elements , 1993 .

[14]  J. Rhiu,et al.  Two higher-order shell finite elements with stabilization matrix , 1990 .

[15]  J. J. Rhiu,et al.  A new efficient mixed formulation for thin shell finite element models , 1987 .

[16]  Sung W. Lee,et al.  An assumed strain triangular curved solid shell element formulation for analysis of plates and shells undergoing finite rotations , 2001 .

[17]  Atef F. Saleeb,et al.  A hybrid/mixed model for non‐linear shell analysis and its applications to large‐rotation problems , 1990 .

[18]  Hyun Gyu Kim,et al.  Analysis of thin beams, using the meshless local Petrov–Galerkin method, with generalized moving least squares interpolations , 1999 .

[19]  Sung W. Lee,et al.  An assumed strain triangular solid shell element with bubble function displacements for analysis of plates and shells , 2001 .

[20]  Chahngmin Cho,et al.  An efficient assumed strain element model with six DOF per node for geometrically non‐linear shells , 1995 .

[21]  A. El-Zafrany Boundary Element Stress Analysis of Thick Reissner Plates in Bending under Generalized Loading , 2001 .

[22]  YuanTong Gu,et al.  A Meshless Local Petrov-Galerkin (MLPG) Formulation for Static and Free Vibration Analyses of Thin Plates , 2001 .

[23]  Brian L. Kemp,et al.  A four‐node solid shell element formulation with assumed strain , 1998 .