Factors of characteristic words of irrational numbers

Let β be an irrational number between 0 and 1. The characteristic word f(β) of β is defined to be the infinite word over {0, 1} whose nth letter is [(n + 1)β] -[nβ], n ≥ 1. It is well known that, for each m ≥ 1, f(β) has exactly m + 1 distinct factors of length m. In this paper, we shall develop a method to construct these factors. Under our construction, the 1-sets of these m + 1 factors x0(m), x1(m),..., xm(m) are determined, these factors are increasing in the lexicographic order and their moments M(x0(m)), M(x1(m)),..., M(xm(m)) form an increasing sequence of m + 1 consecutive integers. Some known results about generating factors of f(β) using the unbordered α-words and their conjugates turn out to be consequences of our main theorem.

[1]  Filippo Mignosi,et al.  Some Combinatorial Properties of Sturmian Words , 1994, Theor. Comput. Sci..

[2]  Filippo Mignosi,et al.  On the Number of Factors of Sturmian Words , 1991, Theor. Comput. Sci..

[3]  Underwood Dudley Elementary Number Theory , 1978 .

[4]  W. J. Thron,et al.  Encyclopedia of Mathematics and its Applications. , 1982 .

[5]  Wai-Fong Chuan,et al.  alpha-Words and factors of characteristic sequences , 1997, Discret. Math..

[6]  Shin-ichi Yasutomi,et al.  On continued fractions, substitutions and characteristic sequences [nx+y]-[(n-1)x+y] , 1990 .

[7]  Jean-Pierre Borel,et al.  Quelques mots sur la droite projective réelle , 1993 .

[8]  Tom C. Brown,et al.  Descriptions of the Characteristic Sequence of an Irrational , 1993, Canadian Mathematical Bulletin.

[9]  Tom C. Brown,et al.  Sums of Fractional Parts of Integer Multiples of an Irrational , 1995 .

[10]  M. Lothaire Algebraic Combinatorics on Words , 2002 .

[11]  G. A. Hedlund,et al.  Symbolic Dynamics II. Sturmian Trajectories , 1940 .

[12]  Michael Lindenbaum,et al.  A New Parameterization of Digital Straight Lines , 1991, IEEE Trans. Pattern Anal. Mach. Intell..

[13]  Dominique Gouyou-Beauchamps,et al.  Sur les Facteurs des Suites de Sturm , 1990, Theor. Comput. Sci..

[14]  M. Lothaire,et al.  Combinatorics on words: Frontmatter , 1997 .

[15]  Jean Berstel,et al.  Random generation of finite Sturmian words , 1996, Discret. Math..

[16]  A. S. Fraenkel,et al.  Determination of [nθ] by its Sequence of*Differences , 1978, Canadian Mathematical Bulletin.

[17]  Jean Berstel,et al.  A Geometric Proof of the Enumeration Formula for Sturmian Words , 1993, Int. J. Algebra Comput..

[18]  Aldo de Luca,et al.  Sturmian Words, Lyndon Words and Trees , 1997, Theor. Comput. Sci..

[19]  Wai-Fong Chuan Moments of conjugacy classes of binary words , 2004, Theor. Comput. Sci..

[20]  Tony van Ravenstein The Three Gap Theorem (Steinhaus Conjecture) , 1988, Journal of the Australian Mathematical Society. Series A. Pure Mathematics and Statistics.

[21]  Wai-Fong Chuan,et al.  A Representation Theorem of the Suffixes of Characteristic Sequences , 1998, Discret. Appl. Math..

[22]  S. Dulucq,et al.  On the factors of the Sturmian sequences , 1990 .

[23]  Wai-Fong Chuan,et al.  Unbordered Factors of Characteristic Sequences of Irrational Numbers , 1998, Theor. Comput. Sci..