Modeling and simulation of bridge-section buffeting response in turbulent flow

Buffeting analysis plays an important role in the wind-resistant design of long-span bridges. While computational methods have been widely used in the study of self-excited forces on bridge section...

[1]  Yuri Bazilevs,et al.  Computational and experimental investigation of free vibration and flutter of bridge decks , 2018, Computational Mechanics.

[2]  Yuri Bazilevs,et al.  CHALLENGES AND DIRECTIONS IN COMPUTATIONAL FLUID–STRUCTURE INTERACTION , 2013 .

[3]  G. Hulbert,et al.  A generalized-α method for integrating the filtered Navier–Stokes equations with a stabilized finite element method , 2000 .

[4]  Tayfun E. Tezduyar,et al.  SPACE–TIME FLUID–STRUCTURE INTERACTION METHODS , 2012 .

[5]  Tayfun E. Tezduyar,et al.  FSI modeling of the reefed stages and disreefing of the Orion spacecraft parachutes , 2014 .

[6]  Giorgio Diana,et al.  Wind tunnel tests and numerical approach for long span bridges: the Messina bridge , 2013 .

[7]  D. Spalding A Single Formula for the “Law of the Wall” , 1961 .

[8]  Allan Larsen,et al.  On estimating the aerodynamic admittance of bridge sections by a mesh-free vortex method , 2015 .

[9]  Kai-Uwe Bletzinger,et al.  Bridge flutter derivatives based on computed, validated pressure fields , 2012 .

[10]  W. H. Melbourne,et al.  The aerodynamic admittance of two-dimensional rectangular section cylinders in smooth flow , 1986 .

[11]  Roberto Scotta,et al.  Numerical wind tunnel for aerodynamic and aeroelastic characterization of bridge deck sections , 2016 .

[12]  Kenji Takizawa,et al.  Space–time computational analysis of MAV flapping-wing aerodynamics with wing clapping , 2015 .

[13]  Tayfun E. Tezduyar,et al.  Multiscale space-time methods for thermo-fluid analysis of a ground vehicle and its tires , 2015 .

[14]  Ahsan Kareem,et al.  Advances in modeling of Aerodynamic forces on bridge decks , 2002 .

[15]  Tayfun E. Tezduyar,et al.  Special methods for aerodynamic-moment calculations from parachute FSI modeling , 2015 .

[16]  Tayfun E. Tezduyar,et al.  Space–time VMS computation of wind-turbine rotor and tower aerodynamics , 2014 .

[17]  A. Kareem,et al.  TIME DOMAIN FLUTTER AND BUFFETING RESPONSE ANALYSIS OF BRIDGES , 1999 .

[18]  Tayfun E. Tezduyar,et al.  Stabilization and discontinuity-capturing parameters for space–time flow computations with finite element and isogeometric discretizations , 2018 .

[19]  J. Frandsen Numerical bridge deck studies using finite elements. Part I: flutter , 2004 .

[20]  T. Hughes,et al.  Isogeometric variational multiscale modeling of wall-bounded turbulent flows with weakly enforced boundary conditions on unstretched meshes , 2010 .

[21]  J. Kaimal,et al.  Spectral Characteristics of Surface-Layer Turbulence , 1972 .

[22]  Hitoshi Hattori,et al.  Space–time VMS method for flow computations with slip interfaces (ST-SI) , 2015 .

[23]  Kenji Takizawa,et al.  Computational engineering analysis with the new-generation space–time methods , 2014 .

[24]  A. Korobenko,et al.  FSI Simulation of two back-to-back wind turbines in atmospheric boundary layer flow , 2017 .

[25]  Yuri Bazilevs,et al.  ALE-VMS AND ST-VMS METHODS FOR COMPUTER MODELING OF WIND-TURBINE ROTOR AERODYNAMICS AND FLUID–STRUCTURE INTERACTION , 2012 .

[26]  Tayfun E. Tezduyar,et al.  The multi-domain method for computation of the aerodynamics of a parachute crossing the far wake of an aircraft , 2001 .

[27]  John Sheridan,et al.  Response of base suction and vortex shedding from rectangular prisms to transverse forcing , 2002, Journal of Fluid Mechanics.

[28]  Tayfun E. Tezduyar,et al.  Ram-air parachute structural and fluid mechanics computations with the Space-Time Isogeometric Analysis (ST-IGA) , 2016 .

[29]  Tayfun E. Tezduyar,et al.  FSI modeling of the Orion spacecraft drogue parachutes , 2015 .

[30]  R. B. Dean Reynolds Number Dependence of Skin Friction and Other Bulk Flow Variables in Two-Dimensional Rectangular Duct Flow , 1978 .

[31]  I. Akkerman,et al.  Large eddy simulation of turbulent Taylor-Couette flow using isogeometric analysis and the residual-based variational multiscale method , 2010, J. Comput. Phys..

[32]  Tayfun E. Tezduyar,et al.  Space–Time method for flow computations with slip interfaces and topology changes (ST-SI-TC) , 2016 .

[33]  Tayfun E. Tezduyar,et al.  Space–time fluid mechanics computation of heart valve models , 2014 .

[34]  Shaopeng Li,et al.  Aerodynamic admittance of streamlined bridge decks , 2018 .

[35]  Kenji Takizawa,et al.  Computational thermo-fluid analysis of a disk brake , 2016 .

[36]  Javier Jiménez,et al.  Scaling of the velocity fluctuations in turbulent channels up to Reτ=2003 , 2006 .

[37]  Victor M. Calo,et al.  Improving stability of stabilized and multiscale formulations in flow simulations at small time steps , 2010 .

[38]  Tayfun E. Tezduyar,et al.  Aorta flow analysis and heart valve flow and structure analysis , 2018 .

[39]  Xiaowei Deng,et al.  Free-surface flow modeling and simulation of horizontal-axis tidal-stream turbines , 2017 .

[40]  Nicholas P. Jones,et al.  COUPLED FLUTTER AND BUFFETING ANALYSIS OF LONG-SPAN BRIDGES , 1996 .

[41]  Tayfun E. Tezduyar,et al.  Heart Valve Flow Computation with the Space–Time Slip Interface Topology Change (ST-SI-TC) Method and Isogeometric Analysis (IGA) , 2018 .

[42]  Yuri Bazilevs,et al.  Wind turbine aerodynamics using ALE–VMS: validation and the role of weakly enforced boundary conditions , 2012, Computational Mechanics.

[43]  Vipin Kumar,et al.  A Fast and High Quality Multilevel Scheme for Partitioning Irregular Graphs , 1998, SIAM J. Sci. Comput..

[44]  T. Hughes,et al.  Isogeometric analysis : CAD, finite elements, NURBS, exact geometry and mesh refinement , 2005 .

[45]  Tayfun E. Tezduyar,et al.  Space–Time Computational Analysis of Tire Aerodynamics with Actual Geometry, Road Contact, and Tire Deformation , 2018 .

[46]  Yuri Bazilevs,et al.  Engineering Analysis and Design with ALE-VMS and Space–Time Methods , 2014, Archives of Computational Methods in Engineering.

[47]  Tayfun E. Tezduyar,et al.  Multiscale methods for gore curvature calculations from FSI modeling of spacecraft parachutes , 2014 .

[48]  Jintai Chung,et al.  A Time Integration Algorithm for Structural Dynamics With Improved Numerical Dissipation: The Generalized-α Method , 1993 .

[49]  A. Korobenko,et al.  A new variational multiscale formulation for stratified incompressible turbulent flows , 2017 .

[50]  H. Tanaka,et al.  New Estimation Method of Aerodynamic Admittance Function , 2001 .

[51]  Tayfun E. Tezduyar,et al.  Finite element stabilization parameters computed from element matrices and vectors , 2000 .

[52]  Robert H. Scanlan,et al.  The action of flexible bridges under wind, II: Buffeting theory , 1978 .

[53]  W. Sears,et al.  Some Aspects of Non-Stationary Airfoil Theory and Its Practical Application , 1941 .

[54]  Lin Zhao,et al.  Cross-spectral recognition method of bridge deck aerodynamic admittance function , 2015, Earthquake Engineering and Engineering Vibration.

[55]  Allan Larsen,et al.  Discrete vortex method simulations of the aerodynamic admittance in bridge aerodynamics , 2010 .

[56]  Tayfun E. Tezduyar,et al.  Heart valve flow computation with the integrated Space–Time VMS, Slip Interface, Topology Change and Isogeometric Discretization methods , 2017 .

[57]  Robert H. Scanlan,et al.  Problematics in Formulation of Wind‐Force Models for Bridge Decks , 1993 .

[58]  Tayfun E. Tezduyar,et al.  Multi-domain parallel computation of wake flows , 1999 .

[59]  Tayfun E. Tezduyar,et al.  Fluid-structure interactions of a parachute crossing the far wake of an aircraft , 2001 .

[60]  Allan Larsen,et al.  Discrete vortex simulation of flow around five generic bridge deck sections , 1998 .

[61]  Ledong Zhu,et al.  Identification and application of six-component aerodynamic admittance functions of a closed-box bridge deck , 2018 .

[62]  Ragnar Sigbjörnsson,et al.  Simplified prediction of wind-induced response and stability limit of slender long-span suspension bridges, based on modified quasi-steady theory: A case study , 2010 .

[63]  Kenji Takizawa,et al.  FSI analysis of the blood flow and geometrical characteristics in the thoracic aorta , 2014 .

[64]  G. L Larose,et al.  Experimental Determination of the Aerodynamic Admittance of a Bridge Deck Segment , 1999 .

[65]  Francesco Ubertini,et al.  On the identification of flutter derivatives of bridge decks via RANS turbulence models: Benchmarking on rectangular prisms , 2014 .

[66]  R. Sankaran,et al.  Direct measurement of the aerodynamic admittance of two-dimensional rectangular cylinders in smooth and turbulent flows , 1992 .

[67]  Yuri Bazilevs,et al.  Isogeometric divergence-conforming variational multiscale formulation of incompressible turbulent flows , 2017 .

[68]  Yuri Bazilevs,et al.  Computation of the Flow Over a Sphere at Re = 3700: A Comparison of Uniform and Turbulent Inflow Conditions , 2014 .

[69]  Ahsan Kareem,et al.  Advanced Structural Wind Engineering , 2013 .

[70]  Tayfun E. Tezduyar,et al.  A Geometrical-Characteristics Study in Patient-Specific FSI Analysis of Blood Flow in the Thoracic Aorta , 2016 .

[71]  L. Patruno,et al.  Accuracy of numerically evaluated flutter derivatives of bridge deck sections using RANS: Effects on the flutter onset velocity , 2015 .

[72]  Francesco Ubertini,et al.  On the evaluation of bridge deck flutter derivatives using RANS turbulence models , 2013 .

[73]  Tayfun E. Tezduyar,et al.  New Directions in Space–Time Computational Methods , 2016 .

[74]  T. Hughes,et al.  Isogeometric fluid-structure interaction: theory, algorithms, and computations , 2008 .

[75]  T. Tezduyar Computation of moving boundaries and interfaces and stabilization parameters , 2003 .

[76]  E. Morfiadakis,et al.  The suitability of the von Karman spectrum for the structure of turbulence in a complex terrain wind farm , 1996 .

[77]  Yuri Bazilevs,et al.  Isogeometric Modeling and Experimental Investigation of Moving-Domain Bridge Aerodynamics , 2019, Journal of Engineering Mechanics.

[78]  D. E. Walshe,et al.  Measurement and application of the aerodynamic admittance function for a box-girder bridge , 1983 .

[79]  Yuguang Bai,et al.  Three dimensional numerical simulations of long-span bridge aerodynamics, using block-iterative coupling and DES , 2010 .

[80]  John Kim,et al.  DIRECT NUMERICAL SIMULATION OF TURBULENT CHANNEL FLOWS UP TO RE=590 , 1999 .

[81]  Guy L. Larose,et al.  Direct measurements of buffeting wind forces on bridge decks , 1998 .

[82]  Hitoshi Hattori,et al.  Computational analysis of flow-driven string dynamics in turbomachinery , 2017 .

[83]  Richard G. J. Flay,et al.  Identification of aerodynamic admittance functions of a flat closed-box deck in different grid-generated turbulent wind fields , 2018 .

[84]  Stephen B. Pope Turbulent Flows: Wall flows , 2000 .

[85]  Yuri Bazilevs,et al.  Experimental and numerical FSI study of compliant hydrofoils , 2015 .

[86]  Stephen B. Pope Turbulent Flows: The scales of turbulent motion , 2000 .

[87]  Tayfun E. Tezduyar,et al.  Space–time VMS computational flow analysis with isogeometric discretization and a general-purpose NURBS mesh generation method , 2017 .

[88]  Tayfun E. Tezduyar,et al.  A General-Purpose NURBS Mesh Generation Method for Complex Geometries , 2018 .

[89]  Robert H. Scanlan,et al.  The action of flexible bridges under wind, I: Flutter theory† , 1978 .

[90]  A. Kareem,et al.  AERODYNAMIC COUPLING EFFECTS ON FLUTTER AND BUFFETING OF BRIDGES , 2000 .

[91]  Kenji Takizawa,et al.  Space–time interface-tracking with topology change (ST-TC) , 2014 .

[92]  A. Korobenko,et al.  Computational free-surface fluid–structure interaction with application to floating offshore wind turbines , 2016 .

[93]  J. Mann,et al.  Gust loading on streamlined bridge decks , 1998 .

[94]  T. Hughes,et al.  Variational multiscale residual-based turbulence modeling for large eddy simulation of incompressible flows , 2007 .

[95]  Tayfun E. Tezduyar,et al.  Multiscale space–time fluid–structure interaction techniques , 2011 .

[96]  Tayfun E. Tezduyar,et al.  Sequentially-coupled space–time FSI analysis of bio-inspired flapping-wing aerodynamics of an MAV , 2014 .

[97]  Takanori Ikeda,et al.  Prediction of aerodynamic characteristics of a box girder bridge section using the LES turbulence model , 2008 .

[98]  A. Korobenko,et al.  FSI modeling of a propulsion system based on compliant hydrofoils in a tandem configuration , 2016 .

[99]  Victor M. Calo,et al.  Weak Dirichlet Boundary Conditions for Wall-Bounded Turbulent Flows , 2007 .

[100]  Hitoshi Hattori,et al.  Turbocharger flow computations with the Space-Time Isogeometric Analysis (ST-IGA) , 2017 .

[101]  Tayfun E. Tezduyar,et al.  Porosity models and computational methods for compressible-flow aerodynamics of parachutes with geometric porosity , 2017 .

[102]  Kenji Takizawa,et al.  Fluid–structure interaction modeling of clusters of spacecraft parachutes with modified geometric porosity , 2013 .

[103]  Thomas J. R. Hughes,et al.  Weak imposition of Dirichlet boundary conditions in fluid mechanics , 2007 .

[104]  Yuri Bazilevs,et al.  New directions and challenging computations in fluid dynamics modeling with stabilized and multiscale methods , 2015 .