Spherical separation with infinitely far center

We tackle the problem of separating two finite sets of samples by means of a spherical surface, focusing on the case where the center of the sphere is fixed. Such approach reduces to the minimization of a convex and nonsmooth function of just one variable (the radius), revealing very effective in terms of computational time. In particular, we analyze the case where the center of the sphere is selected far from both the two sets, embedding the grossone idea and obtaining a kind of linear separation. Some numerical results are presented on classical binary data sets drawn from the literature.

[1]  Le Thi Hoai An,et al.  Binary classification via spherical separator by DC programming and DCA , 2012, Journal of Global Optimization.

[2]  Anatoly A. Zhigljavsky,et al.  Computing sums of conditionally convergent and divergent series using the concept of grossone , 2012, Appl. Math. Comput..

[3]  Yaroslav D. Sergeyev,et al.  On strong homogeneity of a class of global optimization algorithms working with infinite and infinitesimal scales , 2018, Commun. Nonlinear Sci. Numer. Simul..

[4]  Manlio Gaudioso,et al.  Numerical infinitesimals in a variable metric method for convex nonsmooth optimization , 2018, Appl. Math. Comput..

[5]  M. Gaudioso,et al.  Nonlinear programming for classification problems in machine learning , 2016 .

[6]  Annabella Astorino,et al.  DC models for spherical separation , 2010, J. Glob. Optim..

[7]  O. Mangasarian Linear and Nonlinear Separation of Patterns by Linear Programming , 1965 .

[8]  Annabella Astorino,et al.  A Lagrangian Relaxation Approach for Binary Multiple Instance Classification , 2019, IEEE Transactions on Neural Networks and Learning Systems.

[9]  Eugenio Vocaturo,et al.  Melanoma Detection by Means of Multiple Instance Learning , 2019, Interdisciplinary Sciences: Computational Life Sciences.

[10]  Antonio Fuduli,et al.  Robust spherical separation , 2017 .

[11]  Yaroslav D. Sergeyev,et al.  Numerical infinities and infinitesimals: Methodology, applications, and repercussions on two Hilbert problems , 2017 .

[12]  Annabella Astorino,et al.  A fixed-center spherical separation algorithm with kernel transformations for classification problems , 2009, Comput. Manag. Sci..

[13]  Yaroslav D. Sergeyev,et al.  Numerical point of view on Calculus for functions assuming finite, infinite, and infinitesimal values over finite, infinite, and infinitesimal domains , 2009, 1203.4140.

[14]  Frank Plastria,et al.  Multi-instance classification through spherical separation and VNS , 2014, Comput. Oper. Res..

[15]  M. S. Mukhametzhanov,et al.  Conjugate-symplecticity properties of Euler–Maclaurin methods and their implementation on the Infinity Computer , 2018 .

[16]  Yaroslav D. Sergeyev,et al.  Planar methods and grossone for the Conjugate Gradient breakdown in nonlinear programming , 2018, Comput. Optim. Appl..

[17]  Renato De Leone,et al.  Nonlinear programming and Grossone: Quadratic Programing and the role of Constraint Qualifications , 2018, Appl. Math. Comput..

[18]  Annabella Astorino,et al.  SVM-Based Multiple Instance Classification via DC Optimization , 2019, Algorithms.

[19]  Francisco Herrera,et al.  Multiple Instance Learning , 2016, Springer International Publishing.

[20]  Annabella Astorino,et al.  Edge detection by spherical separation , 2013, Computational Management Science.

[21]  Y. Shimuta,et al.  Modeling of initial imprinting caused by laser‐intensity nonuniformities in ablative plasmas , 2008 .

[22]  Thomas Hofmann,et al.  Support Vector Machines for Multiple-Instance Learning , 2002, NIPS.

[23]  Annabella Astorino,et al.  Non-smoothness in classification problems , 2008, Optim. Methods Softw..

[24]  Renato De Leone,et al.  The use of grossone in Mathematical Programming and Operations Research , 2011, Appl. Math. Comput..

[25]  M. Emre Celebi,et al.  Partitional Clustering Algorithms , 2014 .

[26]  Alexander Zien,et al.  Semi-Supervised Classification by Low Density Separation , 2005, AISTATS.

[27]  Maurice Margenstern Using grossone to count the number of elements of infinite sets and the connection with bijections , 2011, ArXiv.

[28]  S. Odewahn,et al.  Automated star/galaxy discrimination with neural networks , 1992 .

[29]  Annabella Astorino,et al.  Conic separation of nite sets I. The homogeneous case. , 2014 .

[30]  Yaroslav D. Sergeyev,et al.  Iterative Grossone-Based Computation of Negative Curvature Directions in Large-Scale Optimization , 2020, Journal of Optimization Theory and Applications.

[31]  Antonio Fuduli,et al.  A Semiproximal Support Vector Machine Approach for Binary Multiple Instance Learning , 2020, IEEE Transactions on Neural Networks and Learning Systems.

[32]  Eugenio Vocaturo,et al.  A Multiple Instance Learning Algorithm for Color Images Classification , 2018, IDEAS.

[33]  Alberto Falcone,et al.  A Simulink-Based Infinity Computer Simulator and Some Applications , 2019, NUMTA.

[34]  Alexander Zien,et al.  Semi-Supervised Learning , 2006 .

[35]  Annabella Astorino,et al.  Margin maximization in spherical separation , 2012, Computational Optimization and Applications.

[36]  Annabella Astorino,et al.  The Proximal Trajectory Algorithm in SVM Cross Validation , 2016, IEEE Transactions on Neural Networks and Learning Systems.

[37]  Nello Cristianini,et al.  An Introduction to Support Vector Machines and Other Kernel-based Learning Methods , 2000 .

[38]  Annabella Astorino,et al.  Nonsmooth Optimization Techniques for Semisupervised Classification , 2007, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[39]  Gabriele Lolli,et al.  Metamathematical investigations on the theory of Grossone , 2015, Appl. Math. Comput..

[40]  Yaroslav D. Sergeyev,et al.  Higher order numerical differentiation on the Infinity Computer , 2011, Optim. Lett..

[41]  Catherine Blake,et al.  UCI Repository of machine learning databases , 1998 .

[42]  Yaroslav D. Sergeyev,et al.  Solving the Lexicographic Multi-Objective Mixed-Integer Linear Programming Problem using branch-and-bound and grossone methodology , 2020, Commun. Nonlinear Sci. Numer. Simul..

[43]  Franco Montagna,et al.  Taking the Pirahã seriously , 2015, Commun. Nonlinear Sci. Numer. Simul..

[44]  Giovanna Miglionico,et al.  Classification in the multiple instance learning framework via spherical separation , 2019, Soft Computing.

[45]  Fabio Caldarola The Sierpinski curve viewed by numerical computations with infinities and infinitesimals , 2018, Appl. Math. Comput..

[46]  Yaroslav D. Sergeyev,et al.  Independence of the Grossone-Based Infinity Methodology from Non-standard Analysis and Comments upon Logical Fallacies in Some Texts Asserting the Opposite , 2018, Foundations of Science.