Democratizing Content Publication with Coral

CoralCDN is a peer-to-peer content distribution network that allows a user to run a web site that offers high performance and meets huge demand, all for the price of a cheap broadband Internet connection. Volunteer sites that run CoralCDN automatically replicate content as a side effect of users accessing it. Publishing through CoralCDN is as simple as making a small change to the hostname in an object's URL; a peer-to-peer DNS layer transparently redirects browsers to nearby participating cache nodes, which in turn cooperate to minimize load on the origin web server. One of the system's key goals is to avoid creating hot spots that might dissuade volunteers and hurt performance. It achieves this through Coral, a latency-optimized hierarchical indexing infrastructure based on a novel abstraction called a distributed sloppy hash table, or DSHT.

[1]  Gregory F. Pfister,et al.  “Hot spot” contention and combining in multistage interconnection networks , 1985, IEEE Transactions on Computers.

[2]  Michael F. Schwartz,et al.  Locating nearby copies of replicated Internet servers , 1995, SIGCOMM '95.

[3]  Peter B. Danzig,et al.  A Hierarchical Internet Object Cache , 1996, USENIX Annual Technical Conference.

[4]  Jacob R. Lorch,et al.  Making World Wide Web Caching Servers Cooperate , 1996, World Wide Web J..

[5]  David R. Karger,et al.  Consistent hashing and random trees: distributed caching protocols for relieving hot spots on the World Wide Web , 1997, STOC '97.

[6]  Michael RabinovichAT,et al.  A Taste of Crispy Squid , 1998 .

[7]  David Mazières,et al.  Escaping the evils of centralized control with self-certifying pathnames , 1998, EW 8.

[8]  David Thaler,et al.  Using name-based mappings to increase hit rates , 1998, TNET.

[9]  David R. Karger,et al.  Web Caching with Consistent Hashing , 1999, Comput. Networks.

[10]  Li Fan,et al.  Summary cache: a scalable wide-area web cache sharing protocol , 2000, TNET.

[11]  Ben Y. Zhao,et al.  OceanStore: an architecture for global-scale persistent storage , 2000, SIGP.

[12]  Kurt Rothermel,et al.  Dynamic distance maps of the Internet , 2000, Proceedings IEEE INFOCOM 2000. Conference on Computer Communications. Nineteenth Annual Joint Conference of the IEEE Computer and Communications Societies (Cat. No.00CH37064).

[13]  G. Voelker,et al.  On the scale and performance of cooperative Web proxy caching , 2000, OPSR.

[14]  Paul Francis,et al.  IDMaps: a global internet host distance estimation service , 2001, TNET.

[15]  Peter Druschel,et al.  Pastry: Scalable, distributed object location and routing for large-scale peer-to- , 2001 .

[16]  Ben Y. Zhao,et al.  An Infrastructure for Fault-tolerant Wide-area Location and Routing , 2001 .

[17]  David Mazières,et al.  A Toolkit for User-Level File Systems , 2001, USENIX Annual Technical Conference, General Track.

[18]  Mark Handley,et al.  A scalable content-addressable network , 2001, SIGCOMM '01.

[19]  David R. Karger,et al.  Wide-area cooperative storage with CFS , 2001, SOSP.

[20]  Antony I. T. Rowstron,et al.  Storage management and caching in PAST, a large-scale, persistent peer-to-peer storage utility , 2001, SOSP.

[21]  Antony I. T. Rowstron,et al.  Pastry: Scalable, Decentralized Object Location, and Routing for Large-Scale Peer-to-Peer Systems , 2001, Middleware.

[22]  Robert Morris,et al.  Chord: A scalable peer-to-peer lookup service for internet applications , 2001, SIGCOMM 2001.

[23]  Kirk L. Johnson,et al.  The measured performance of content distribution networks , 2001, Comput. Commun..

[24]  Larry L. Peterson,et al.  Proceedings of the 5th Symposium on Operating Systems Design and Implementation the Effectiveness of Request Redirection on Cdn Robustness , 2022 .

[25]  Mary Baker,et al.  Peer-to-Peer Caching Schemes to Address Flash Crowds , 2002, IPTPS.

[26]  Randy H. Katz,et al.  SCAN: A Dynamic, Scalable, and Efficient Content Distribution Network , 2002, Pervasive.

[27]  Antony I. T. Rowstron,et al.  Squirrel: a decentralized peer-to-peer web cache , 2002, PODC '02.

[28]  Hui Zhang,et al.  Predicting Internet network distance with coordinates-based approaches , 2002, Proceedings.Twenty-First Annual Joint Conference of the IEEE Computer and Communications Societies.

[29]  David Mazières,et al.  Kademlia: A Peer-to-Peer Information System Based on the XOR Metric , 2002, IPTPS.

[30]  Michael B. Jones,et al.  SkipNet: A Scalable Overlay Network with Practical Locality Properties , 2003, USENIX Symposium on Internet Technologies and Systems.

[31]  Ben Y. Zhao,et al.  Towards a Common API for Structured Peer-to-Peer Overlays , 2003, IPTPS.

[32]  David Mazières,et al.  Rateless Codes and Big Downloads , 2003, IPTPS.

[33]  David R. Karger,et al.  Chord: a scalable peer-to-peer lookup protocol for internet applications , 2003, TNET.

[34]  Kirsten Hildrum,et al.  Optimizations for Locality-Aware Structured Peer-to-Peer Overlays , 2003 .

[35]  Ratul Mahajan,et al.  Measuring ISP topologies with Rocketfuel , 2004, IEEE/ACM Transactions on Networking.

[36]  David Mazières,et al.  On-the-fly verification of rateless erasure codes for efficient content distribution , 2004, IEEE Symposium on Security and Privacy, 2004. Proceedings. 2004.

[37]  Dan Rubenstein,et al.  A lightweight, robust P2P system to handle flash crowds , 2004, IEEE Journal on Selected Areas in Communications.

[38]  Ben Y. Zhao,et al.  Tapestry: a resilient global-scale overlay for service deployment , 2004, IEEE Journal on Selected Areas in Communications.

[39]  M. Frans Kaashoek,et al.  SSL splitting: Securely serving data from untrusted caches , 2003, Comput. Networks.