Plankton metabolic balance in the eastern Beagle Channel during spring

[1]  O. Florentín,et al.  Mesozooplankton community structure and trophic relationships in an austral high-latitude ecosystem (Beagle Channel): The role of bottom-up and top-down forces during springtime , 2023, Journal of Marine Systems.

[2]  A. Malits,et al.  Source characterization of dissolved organic matter in the eastern Beagle Channel from a spring situation , 2023, Journal of Marine Systems.

[3]  Jacobo Martín,et al.  Terrigenous dissolved organic matter input and nutrient-light-limited conditions on the winter microbial food web of the Beagle Channel , 2023, Journal of Marine Systems.

[4]  J. Pelegrí,et al.  Multiple controls on carbon dioxide sequestration in the beagle channel (Southern Patagonia) in early fall , 2023, Journal of Marine Systems.

[5]  Jacobo Martín,et al.  Spatial distribution of Munida gregaria (Decapoda, Munididae) larvae in the silled Beagle Channel: Insights from spring and autumn surveys , 2022, Journal of Marine Systems.

[6]  Jacobo Martín,et al.  Water Circulation and Transport Time Scales in the Beagle Channel, Southernmost Tip of South America , 2022, Journal of Marine Science and Engineering.

[7]  R. Kerr,et al.  The southwestern South Atlantic continental shelf biogeochemical divide , 2022, Biogeochemistry.

[8]  P. Tortell,et al.  Irradiance and nutrient-dependent effects on photosynthetic electron transport in Arctic phytoplankton: A comparison of two chlorophyll fluorescence-based approaches to derive primary photochemistry , 2021, PloS one.

[9]  F. Bourrin,et al.  General Hydrography of the Beagle Channel, a Subantarctic Interoceanic Passage at the Southern Tip of South America , 2021, Frontiers in Marine Science.

[10]  Viviana A. Alder,et al.  Temporal variability of the physical and chemical environment, chlorophyll and diatom biomass in the euphotic zone of the Beagle Channel (Argentina): Evidence of nutrient limitation , 2021, Progress in Oceanography.

[11]  J. Bruggeman,et al.  Differences in physiology explain succession of mixoplankton functional types and affect carbon fluxes in temperate seas , 2021, Progress in Oceanography.

[12]  C. Duarte,et al.  Plankton Community Metabolism in Western Australia: Estuarine, Coastal and Oceanic Surface Waters , 2021, Frontiers in Marine Science.

[13]  Sung-Ho Kang,et al.  Effects of Nitrogen Limitation on Phytoplankton Physiology in the Western Arctic Ocean in Summer , 2020, Journal of Geophysical Research: Oceans.

[14]  Yuqiu Wei,et al.  Physiological and Ecological Responses of Photosynthetic Processes to Oceanic Properties and Phytoplankton Communities in the Oligotrophic Western Pacific Ocean , 2020, Frontiers in Microbiology.

[15]  B. Krock,et al.  Microbial plankton configuration in the epipelagic realm from the Beagle Channel to the Burdwood Bank, a Marine Protected Area in Sub-Antarctic waters , 2020, PloS one.

[16]  P. von Dassow,et al.  Response of Phytoplankton Assemblages From Naturally Acidic Coastal Ecosystems to Elevated pCO2 , 2020, Frontiers in Marine Science.

[17]  F. Bourrin,et al.  Particle Dynamics in Ushuaia Bay (Tierra del Fuego)-Potential Effect on Dissolved Oxygen Depletion , 2020, Water.

[18]  M. DeGrandpre,et al.  Seasonal Changes in Carbonate Saturation State and Air‐Sea CO2 Fluxes During an Annual Cycle in a Stratified‐Temperate Fjord (Reloncaví Fjord, Chilean Patagonia) , 2019, Journal of Geophysical Research: Biogeosciences.

[19]  B. Krock,et al.  Linking optical and chemical signatures of dissolved organic matter in the southern Argentine shelf: Distribution and bioavailability , 2019, Journal of Marine Systems.

[20]  Yuqiu Wei,et al.  Fast Repetition Rate Fluorometry (FRRF) Derived Phytoplankton Primary Productivity in the Bay of Bengal , 2019, Front. Microbiol..

[21]  F. Capitanio,et al.  Spatio-temporal dynamics of mesozooplankton in the subantarctic Beagle Channel: The case of Ushuaia Bay (Argentina) , 2019, Regional Studies in Marine Science.

[22]  C. Duarte,et al.  Rates and drivers of Red Sea plankton community metabolism , 2018, Biogeosciences.

[23]  M. Díez,et al.  Winter is cool: spatio-temporal patterns of the squat lobster Munida gregaria and the Fuegian sprat Sprattus fuegensis in a sub-Antarctic estuarine environment , 2018, Polar Biology.

[24]  Katherine R. M. Mackey,et al.  Phytoplankton as Key Mediators of the Biological Carbon Pump: Their Responses to a Changing Climate , 2018 .

[25]  Bo Yang,et al.  Oxygen Optode Sensors: Principle, Characterization, Calibration, and Application in the Ocean , 2018, Front. Mar. Sci..

[26]  N. Silva,et al.  Low spring primary production and microplankton carbon biomass in Sub-Antarctic Patagonian channels and fjords (50–53°S) , 2018 .

[27]  D. Narváez,et al.  Influence of Glacier Melting and River Discharges on the Nutrient Distribution and DIC Recycling in the Southern Chilean Patagonia , 2017 .

[28]  B. Krock,et al.  Factors influencing the characteristics and distribution or surface organic matter in the Pacific-Atlantic connection , 2017 .

[29]  Roberto A. Violante,et al.  LOS CAÑONES SUBMARINOS DEL MARGEN CONTINENTAL ARGENTINO: UNA SÍNTESIS SOBRE SU GÉNESIS Y DINÁMICA SEDIMENTARIA , 2017 .

[30]  D. Suggett,et al.  Relationship between light, community composition and the electron requirement for carbon fixation in natural phytoplankton , 2017 .

[31]  A. Piola,et al.  Distribution of sea-air CO 2 fluxes in the Patagonian Sea: Seasonal, biological and thermal effects , 2017 .

[32]  P. Tortell,et al.  Primary productivity and the coupling of photosynthetic electron transport and carbon fixation in the Arctic Ocean , 2017 .

[33]  S. Dupont,et al.  Species-specific responses to ocean acidification should account for local adaptation and adaptive plasticity , 2017, Nature Ecology &Evolution.

[34]  C. Chen,et al.  Reconciliation of pH25 and pHinsitu acidification rates of the surface oceans: A simple conversion using only in situ temperature , 2017 .

[35]  K. Richardson,et al.  Succession of picophytoplankton during the spring bloom 2012 in Disko Bay (West Greenland)—an unexpectedly low abundance of green algae , 2017, Polar Biology.

[36]  E. A. Gomez,et al.  The Pacific-Atlantic connection: Biogeochemical signals in the southern end of the Argentine shelf , 2016 .

[37]  M. Follows,et al.  Source waters for the highly productive Patagonian shelf in the southwestern Atlantic , 2016 .

[38]  K. Gao,et al.  Contrasting Photophysiological Characteristics of Phytoplankton Assemblages in the Northern South China Sea , 2016, PloS one.

[39]  D. Caron,et al.  Defining Planktonic Protist Functional Groups on Mechanisms for Energy and Nutrient Acquisition: Incorporation of Diverse Mixotrophic Strategies. , 2016, Protist.

[40]  P. Tortell,et al.  Interacting Effects of Light and Iron Availability on the Coupling of Photosynthetic Electron Transport and CO2-Assimilation in Marine Phytoplankton , 2015, PloS one.

[41]  N. Gruber Ocean biogeochemistry: Carbon at the coastal interface , 2014, Nature.

[42]  N. Silva,et al.  Silicic acid enrichment of subantarctic surface water from continental inputs along the Patagonian archipelago interior sea (41–56°S) , 2014 .

[43]  A. Lopez-Urrutia,et al.  Poor correlation between phytoplankton community growth rates and nutrient concentration in the sea , 2014 .

[44]  Raymond J. G. Leakey,et al.  Plankton metabolism and bacterial growth efficiency in offshore waters along a latitudinal transect between the UK and Svalbard , 2014 .

[45]  C. Duarte,et al.  Temperature dependence of planktonic metabolism in the subtropical North Atlantic Ocean , 2014 .

[46]  Taro Takahashi,et al.  Climatological distributions of pH, pCO2, total CO2, alkalinity, and CaCO3 saturation in the global surface ocean, and temporal changes at selected locations , 2014 .

[47]  A. Lopez-Urrutia,et al.  Metabolic state along a summer north- south transect near the Antarctic Peninsula: a size spectra approach , 2014 .

[48]  N. Silva,et al.  Land–ocean gradient in haline stratification and its effects on plankton dynamics and trophic carbon fluxes in Chilean Patagonian fjords (47–50°S) , 2013 .

[49]  G. Ferreyra,et al.  The role of phytoplankton composition and microbial community metabolism in sea–air ΔpCO2 variation in the Weddell Sea , 2013 .

[50]  James E. Cloern,et al.  Phytoplankton primary production in the world's estuarine-coastal ecosystems , 2013 .

[51]  Yan Bai,et al.  Air–sea exchanges of CO 2 in the world's coastal seas , 2013 .

[52]  Tyler Volk,et al.  Ocean Carbon Pumps: Analysis of Relative Strengths and Efficiencies in Ocean‐Driven Atmospheric CO2 Changes , 2013 .

[53]  S. Doney,et al.  What is the metabolic state of the oligotrophic ocean? A debate. , 2013, Annual review of marine science.

[54]  David M. Karl,et al.  Picophytoplankton biomass distribution in the global ocean , 2012 .

[55]  M. Lomas,et al.  Spatial and seasonal variability of primary production on the Eastern Bering Sea shelf , 2012 .

[56]  G. Ferreyra,et al.  Influence of microbial community composition and metabolism on air.sea ΔpCO2 variation off the western Antarctic Peninsula , 2012 .

[57]  F. Biancalana,et al.  Seasonal and spatial variation of mesozooplankton biomass in Ushuaia and Golondrina bays (Beagle Channel, Argentina)) , 2012 .

[58]  M. Gosselin,et al.  Role of free-living and particle-attached bacteria in the recycling and export of organic material in the Hudson Bay system , 2011 .

[59]  S. Wright,et al.  Primary production in the Sub-Antarctic and Polar Frontal Zones south of Tasmania, Australia; SAZ-Sense survey, 2007 , 2011 .

[60]  C. Duarte,et al.  Air‐sea CO2 fluxes along the coast of Chile: From CO2 outgassing in central northern upwelling waters to CO2 uptake in southern Patagonian fjords , 2011 .

[61]  G. Ferreyra,et al.  Seasonal phytoplankton dynamics in extreme southern South America (Beagle Channel, Argentina) , 2011 .

[62]  J. L. Herrera,et al.  Production and respiration control the marine microbial metabolic balance in the eastern North Atlantic subtropical gyre , 2011 .

[63]  M. Dai,et al.  Dynamics of the carbonate system in a large continental shelf system under the influence of both a river plume and coastal upwelling , 2011 .

[64]  J. Iriarte,et al.  Latitudinal patterns of export production recorded in surface sediments of the Chilean Patagonian fjords (41–55°S) as a response to water column productivity , 2011 .

[65]  Oscar Pizarro,et al.  Seasonal variability of primary production in a fjord ecosystem of the Chilean Patagonia: Implications for the transfer of carbon within pelagic food webs , 2011 .

[66]  C. Langdon Determination of Dissolved Oxygen in Seawater by Winkler Titration Using The Amperometric Technique. , 2010 .

[67]  Richard A. Feely,et al.  Recommendations for autonomous underway pCO2 measuring systems and data-reduction routines , 2009 .

[68]  Alberto Borges,et al.  Reconciling opposing views on carbon cycling in the coastal ocean: Continental shelves as sinks and near-shore ecosystems as sources of atmospheric CO2 , 2009 .

[69]  M. Middelboe,et al.  Viral lysis of Phaeocystis pouchetii: Implications for algal population dynamics and heterotrophic C, N and P cycling , 2009, The ISME Journal.

[70]  Carlos F. Balestrini,et al.  Annual balance and seasonal variability of sea‐air CO2 fluxes in the Patagonia Sea: Their relationship with fronts and chlorophyll distribution , 2009 .

[71]  R. Geider,et al.  Interpretation of fast repetition rate (FRR) fluorescence: signatures of phytoplankton community structure versus physiological state , 2009 .

[72]  Elena Litchman,et al.  Trait-Based Community Ecology of Phytoplankton , 2008 .

[73]  E. Delong,et al.  The Microbial Engines That Drive Earth's Biogeochemical Cycles , 2008, Science.

[74]  C. Lancelot,et al.  Influence of bacteria and salinity on diatom biogenic silica dissolution in estuarine systems , 2008 .

[75]  C. S. Wong,et al.  Climatological mean and decadal change in surface ocean pCO2, and net seaair CO2 flux over the global oceans , 2009 .

[76]  Geir Johnsen,et al.  Biooptical characteristics of PSII and PSI in 33 species (13 pigment groups) of marine phytoplankton, and the relevance for pulse‐amplitude‐modulated and fast‐repetition‐rate fluorometry 1 , 2007 .

[77]  Carlos F. Balestrini,et al.  Role of plankton communities in seaair variations in pCO2 in the SW Atlantic Ocean , 2007 .

[78]  G. G. Bujalesky Coastal geomorphology and evolution of Tierra del Fuego (Southern Argentina) , 2007 .

[79]  S. Schiavon,et al.  Climate Change 2007: Impacts, Adaptation and Vulnerability. , 2007 .

[80]  G. Tarran,et al.  Latitudinal changes in the standing stocks of nano- and picoeukaryotic phytoplankton in the Atlantic Ocean , 2006 .

[81]  G. Ferreyra,et al.  Photoacclimation to Long-Term Ultraviolet Radiation Exposure of Natural Sub-Antarctic Phytoplankton Communities: Fixed Surface Incubations Versus Mixed Mesocosms , 2006, Photochemistry and photobiology.

[82]  J. O'Reilly,et al.  Comparisons of fast repetition rate fluorescence estimated primary production and 14C uptake by phytoplankton , 2006 .

[83]  G. Herndl Respiration in Aquatic Ecosystems , 2006 .

[84]  P. Holligan,et al.  Phytoplankton photoacclimation and photoadaptation in response to environmental gradients in a shelf sea , 2006 .

[85]  K. Flynn,et al.  Chlorophyll content and fluorescence responses cannot be used to gauge reliably phytoplankton biomass, nutrient status or growth rate. , 2006, The New phytologist.

[86]  B. Delille,et al.  Budgeting sinks and sources of CO2 in the coastal ocean: Diversity of ecosystems counts , 2005 .

[87]  Carlos F. Balestrini,et al.  Vertical stratification and air‐sea CO2 fluxes in the Patagonian shelf , 2005 .

[88]  J. Aiken,et al.  A methodology to determine primary production and phytoplankton photosynthetic parameters from Fast Repetition Rate Fluorometry , 2004 .

[89]  C. J. Carrillo,et al.  Processes regulating oxygen and carbon dioxide in surface waters west of the Antarctic Peninsula , 2004 .

[90]  Dongyan Liu,et al.  Geometric models for calculating cell biovolume and surface area for phytoplankton , 2003 .

[91]  Carlos M. Duarte,et al.  Respiration in the open ocean , 2002, Nature.

[92]  D. Amiel,et al.  Dynamics of Chaetoceros socialis blooms in the North Water , 2002 .

[93]  J. Cullen,et al.  FLUORESCENCE‐BASED MAXIMAL QUANTUM YIELD FOR PSII AS A DIAGNOSTIC OF NUTRIENT STRESS , 2001 .

[94]  William K. W. Li,et al.  Changes in the In Vivo Absorption and Fluorescence Excitation Spectra with Growth Irradiance in Three Species of Phytoplankton , 2001 .

[95]  D. Vaulot,et al.  Enumeration of Phytoplankton, Bacteria, and Viruses in Marine Samples , 1999, Current protocols in cytometry.

[96]  J. McCarthy,et al.  Production and respiration rates in the Arabian Sea during the 1995 Northeast and Southwest Monsoons , 2001 .

[97]  J. Cullen Primary Production Methods , 2001 .

[98]  Susanne Menden-Deuer,et al.  Carbon to volume relationships for dinoflagellates, diatoms, and other protist plankton , 2000 .

[99]  Helmut Hillebrand,et al.  BIOVOLUME CALCULATION FOR PELAGIC AND BENTHIC MICROALGAE , 1999 .

[100]  J. Gattuso,et al.  CARBON AND CARBONATE METABOLISM IN COASTAL AQUATIC ECOSYSTEMS , 1998 .

[101]  P. Falkowski,et al.  Measurements of variable chlorophyll fluorescence using fast repetition rate techniques: defining methodology and experimental protocols , 1998, Biochimica et biophysica acta.

[102]  I. Koike,et al.  Direct Determination of Carbon and Nitrogen Contents of Natural Bacterial Assemblages in Marine Environments , 1998, Applied and Environmental Microbiology.

[103]  A. Shiomoto,et al.  Productivity of picoplankton compared with that of larger phytoplankton in the subarctic region , 1997 .

[104]  P. Falkowski,et al.  Confirmation of iron limitation of phytoplankton photosynthesis in the equatorial Pacific Ocean , 1996, Nature.

[105]  Zbigniew S. Kolber,et al.  Variations in Chlorophyll Fluorescence Yields in Phytoplankton in the World Oceans , 1995 .

[106]  F. Millero,et al.  Titration alkalinity of seawater , 1993 .

[107]  Robert H. Byrne,et al.  Spectrophotometric seawater pH measurements: total hydrogen ion concentration scale calibration of m-cresol purple and at-sea results , 1993 .

[108]  D. Stoecker,et al.  An experimentally determined carbon : volume ratio for marine “oligotrichous” ciliates from estuarine and coastal waters , 1989 .

[109]  P. Verity,et al.  Relationships between lorica volume, carbon, nitrogen, and ATP content of tintinnids in Narragansett Bay , 1984 .

[110]  S. Wofsy,et al.  A simple model to predict extinction coefficients and phytoplankton biomass in eutrophic waters1 , 1983 .

[111]  J. H. Carpenter THE CHESAPEAKE BAY INSTITUTE TECHNIQUE FOR THE WINKLER DISSOLVED OXYGEN METHOD , 1965 .