Story Comprehension for Predicting What Happens Next

Automatic story comprehension is a fundamental challenge in Natural Language Understanding, and can enable computers to learn about social norms, human behavior and commonsense. In this paper, we present a story comprehension model that explores three distinct semantic aspects: (i) the sequence of events described in the story, (ii) its emotional trajectory, and (iii) its plot consistency. We judge the model’s understanding of real-world stories by inquiring if, like humans, it can develop an expectation of what will happen next in a given story. Specifically, we use it to predict the correct ending of a given short story from possible alternatives. The model uses a hidden variable to weigh the semantic aspects in the context of the story. Our experiments demonstrate the potential of our approach to characterize these semantic aspects, and the strength of the hidden variable based approach. The model outperforms the state-of-the-art approaches and achieves best results on a publicly available dataset.

[1]  Vladimir Propp,et al.  Morphology of the folktale , 1959 .

[2]  Eugene Charniak,et al.  Toward a model of children's story comprehension , 1972 .

[3]  D. Rubin,et al.  Maximum likelihood from incomplete data via the EM - algorithm plus discussions on the paper , 1977 .

[4]  Roger C. Schank,et al.  Scripts, plans, goals and understanding: an inquiry into human knowledge structures , 1978 .

[5]  Robert Wilensky,et al.  Understanding Goal-Based Stories , 1978, Outstanding Dissertations in the Computer Sciences.

[6]  S. Chatman,et al.  Story and Discourse , 2019 .

[7]  Wendy G. Lehnert,et al.  Plot Units and Narrative Summarization , 1981, Cogn. Sci..

[8]  Gerald DeJong,et al.  Learning Schemata for Natural Language Processing , 1985, IJCAI.

[9]  Scott Weinstein,et al.  Centering: A Framework for Modeling the Local Coherence of Discourse , 1995, CL.

[10]  John B. Lowe,et al.  The Berkeley FrameNet Project , 1998, ACL.

[11]  Mirella Lapata,et al.  Probabilistic Text Structuring: Experiments with Sentence Ordering , 2003, ACL.

[12]  Dan Roth,et al.  Semantic Role Labeling Via Integer Linear Programming Inference , 2004, COLING.

[13]  Regina Barzilay,et al.  Catching the Drift: Probabilistic Content Models, with Applications to Generation and Summarization , 2004, NAACL.

[14]  Nikiforos Karamanis,et al.  Entity coherence for descriptive text structuring , 2004 .

[15]  Chris Mellish,et al.  Evaluating Centering-Based Metrics of Coherence , 2004, ACL.

[16]  Bing Liu,et al.  Opinion observer: analyzing and comparing opinions on the Web , 2005, WWW '05.

[17]  Mirella Lapata,et al.  Automatic Evaluation of Text Coherence: Models and Representations , 2005, IJCAI.

[18]  Janyce Wiebe,et al.  Recognizing Contextual Polarity in Phrase-Level Sentiment Analysis , 2005, HLT.

[19]  Daniel Marcu,et al.  Discourse Generation Using Utility-Trained Coherence Models , 2006, ACL.

[20]  Pascale Fung,et al.  One story, one flow: Hidden Markov Story Models for multilingual multidocument summarization , 2006, TSLP.

[21]  M. Bauer,et al.  Narrative Interviewing , 2007 .

[22]  Geoffrey E. Hinton,et al.  Three new graphical models for statistical language modelling , 2007, ICML '07.

[23]  Nathanael Chambers,et al.  Unsupervised Learning of Narrative Event Chains , 2008, ACL.

[24]  Mirella Lapata,et al.  Modeling Local Coherence: An Entity-Based Approach , 2005, ACL.

[25]  Ani Nenkova,et al.  Revisiting Readability: A Unified Framework for Predicting Text Quality , 2008, EMNLP.

[26]  Cosmin Adrian Bejan Unsupervised Discovery of Event Scenarios from Texts , 2008, FLAIRS Conference.

[27]  Micha Elsner,et al.  Coreference-inspired Coherence Modeling , 2008, ACL.

[28]  Nathanael Chambers,et al.  Unsupervised Learning of Narrative Schemas and their Participants , 2009, ACL.

[29]  Manfred Pinkal,et al.  Learning Script Knowledge with Web Experiments , 2010, ACL.

[30]  Kathleen McKeown,et al.  Extracting Social Networks from Literary Fiction , 2010, ACL.

[31]  Mirella Lapata,et al.  Plot Induction and Evolutionary Search for Story Generation , 2010, ACL.

[32]  Ellen Riloff,et al.  Automatically Producing Plot Unit Representations for Narrative Text , 2010, EMNLP.

[33]  Vanessa May,et al.  What is Narrative Analysis , 2010 .

[34]  Hwee Tou Ng,et al.  Automatically Evaluating Text Coherence Using Discourse Relations , 2011, ACL.

[35]  Ani Nenkova,et al.  A Coherence Model Based on Syntactic Patterns , 2012, EMNLP.

[36]  Micha Elsner,et al.  Character-based kernels for novelistic plot structure , 2012, EACL.

[37]  Kathleen R. McKeown,et al.  Modeling Narrative Discourse , 2012 .

[38]  Inderjeet Mani,et al.  Computational Modeling of Narrative , 2013, Computational Modeling of Narrative.

[39]  Marie-Francine Moens,et al.  Skip N-grams and Ranking Functions for Predicting Script Events , 2012, EACL.

[40]  Mark A. Finlayson Learning narrative structure from annotated folktales , 2012 .

[41]  B. Thorpe For Palm Sunday , 2013 .

[42]  Jackie Chi Kit Cheung,et al.  Probabilistic Frame Induction , 2013, NAACL.

[43]  Brendan T. O'Connor,et al.  Learning Latent Personas of Film Characters , 2013, ACL.

[44]  Matthew L. Jockers Macroanalysis: Digital Methods and Literary History , 2013 .

[45]  Owen Rambow,et al.  Automatic Extraction of Social Networks from Literary Text: A Case Study on Alice in Wonderland , 2013, IJCNLP.

[46]  Nathanael Chambers,et al.  Event Schema Induction with a Probabilistic Entity-Driven Model , 2013, EMNLP.

[47]  Oren Etzioni,et al.  Generating Coherent Event Schemas at Scale , 2013, EMNLP.

[48]  Larry P. Heck,et al.  Learning deep structured semantic models for web search using clickthrough data , 2013, CIKM.

[49]  David Bamman,et al.  A Bayesian Mixed Effects Model of Literary Character , 2014, ACL.

[50]  Thomas G. Dietterich,et al.  Learning Scripts as Hidden Markov Models , 2014, AAAI.

[51]  Jichen Zhu,et al.  Toward Automatic Role Identification in Unannotated Folk Tales , 2014, AIIDE.

[52]  Ivan Titov,et al.  A Hierarchical Bayesian Model for Unsupervised Induction of Script Knowledge , 2014, EACL.

[53]  Raymond J. Mooney,et al.  Statistical Script Learning with Multi-Argument Events , 2014, EACL.

[54]  Owen Rambow,et al.  Frame Semantic Tree Kernels for Social Network Extraction from Text , 2014, EACL.

[55]  Ivan Titov,et al.  Inducing Neural Models of Script Knowledge , 2014, CoNLL.

[56]  Jeffrey Pennington,et al.  GloVe: Global Vectors for Word Representation , 2014, EMNLP.

[57]  Jichen Zhu,et al.  Narrative Hermeneutic Circle: Improving Character Role Identification from Natural Language Text via Feedback Loops , 2015, IJCAI.

[58]  Jacob Eisenstein,et al.  "You're Mr. Lebowski, I'm the Dude": Inducing Address Term Formality in Signed Social Networks , 2015, HLT-NAACL.

[59]  Ivan Titov,et al.  Unsupervised Induction of Semantic Roles within a Reconstruction-Error Minimization Framework , 2014, NAACL.

[60]  Romaric Besançon,et al.  Generative Event Schema Induction with Entity Disambiguation , 2015, ACL.

[61]  Tom M. Mitchell,et al.  Inferring Interpersonal Relations in Narrative Summaries , 2016, AAAI.

[62]  Raymond J. Mooney,et al.  Learning Statistical Scripts with LSTM Recurrent Neural Networks , 2016, AAAI.

[63]  Chris Dyer,et al.  Modeling Evolving Relationships Between Characters in Literary Novels , 2016, AAAI.

[64]  Dan Roth,et al.  Two Discourse Driven Language Models for Semantics , 2016, ACL.

[65]  Nathanael Chambers,et al.  A Corpus and Cloze Evaluation for Deeper Understanding of Commonsense Stories , 2016, NAACL.

[66]  Philipp Koehn,et al.  Synthesis Lectures on Human Language Technologies , 2016 .

[67]  Francis Ferraro,et al.  A Unified Bayesian Model of Scripts, Frames and Language , 2016, AAAI.

[68]  Jordan L. Boyd-Graber,et al.  Feuding Families and Former Friends: Unsupervised Learning for Dynamic Fictional Relationships , 2016, NAACL.

[69]  Snigdha Chaturvedi,et al.  Structured Approaches for Exploring Interpersonal Relationships in Natural Language Text , 2016 .

[70]  Stephen Clark,et al.  What Happens Next? Event Prediction Using a Compositional Neural Network Model , 2016, AAAI.

[71]  Yejin Choi,et al.  Story Cloze Task: UW NLP System , 2017, LSDSem@EACL.

[72]  Nathanael Chambers,et al.  LSDSem 2017 Shared Task: The Story Cloze Test , 2017, LSDSem@EACL.

[73]  Snigdha Chaturvedi,et al.  Unsupervised Learning of Evolving Relationships Between Literary Characters , 2017, AAAI.