Propagation delays induced in GPS signals by dry air, water vapor, hydrometeors, and other particulates

Dry air, water vapor, hydrometeors, and other particulates (sand, dust, aerosols, and volcanic ash) in the atmosphere introduce microwave propagation delays. These delays must be properly characterized to achieve the highest accuracy in surveying and atmospheric sensing using Global Positioning System (GPS) signals. In this paper we review the theory of microwave propagation delays induced by the above atmospheric constituents and estimate their maximum delays. Because the structure of atmospheric refractivity can be highly complex and difficult to model, and because measurement tools are unavailable for characterizing most of the refractive components, we use simplified examples to illustrate its effects. Our results show that propagation delays due to water vapor, cloud liquid, rain, and sandstorms can be significant in high-accuracy GPS applications. For instance, propagation through 1 km of heavy rain can induce 15-mm delays in L1, and because delays due to scattering are dispersive and alias as ionospheric delays in L3 processing, L3 range errors are magnified to 20 mm. Depending upon the distribution of precipitation relative to the configuration of GPS satellites, such unmodeled delays can induce horizontal and vertical errors of several centimeters.

[1]  D. -. Wang Light scattering by nonspherical multilayered particles , 1979 .

[2]  E. Kursinski Initial results of radio occultation observations of Earth's atmophere: using the Global Positioning , 1996 .

[3]  James L. Davis,et al.  GPS APPLICATIONS FOR GEODYNAMICS AND EARTHQUAKE STUDIES , 1997 .

[4]  James J. Spilker,et al.  GPS Signal Structure and Performance Characteristics , 1978 .

[5]  J. Jackson,et al.  Classical Electrodynamics, 2nd Edition , 1975 .

[6]  E. Gross Shape of Collision-Broadened Spectral Lines , 1955 .

[7]  Christopher Ruf,et al.  TOPEX/Poseidon microwave radiometer (TMR). III. Wet troposphere range correction algorithm and pre-launch error budget , 1995, IEEE Trans. Geosci. Remote. Sens..

[8]  T. Herring,et al.  GPS Meteorology: Remote Sensing of Atmospheric Water Vapor Using the Global Positioning System , 1992 .

[9]  C. Meyer Erratum: ``Gravity wave interactions with the diurnal propagating tide'' , 1999 .

[10]  Gunnar Elgered,et al.  Ground‐based measurement of gradients in the “wet” radio refractivity of air , 1993 .

[11]  D. Zrnic,et al.  Doppler Radar and Weather Observations , 1984 .

[12]  T. Manabe,et al.  Millimeter-wave attenuation and delay rates due to fog/cloud conditions , 1989 .

[13]  H. V. Hulst Light Scattering by Small Particles , 1957 .

[14]  H. Al‐Rizzo,et al.  Range errors in global positioning system during ice cloud and snowfall periods , 1994 .

[15]  J. Marshall,et al.  THE DISTRIBUTION OF RAINDROPS WITH SIZE , 1948 .

[16]  G. D. Thayer,et al.  An improved equation for the radio refractive index of air , 1974 .

[17]  R. Reynolds,et al.  Bulletin of the American Meteorological Society , 1996 .

[18]  X. Zou,et al.  Analysis and validation of GPS/MET data in the neutral atmosphere , 1997 .

[19]  Hans J. Liebe,et al.  MPM—An atmospheric millimeter-wave propagation model , 1989 .

[20]  William I. Rose,et al.  Measurements of the complex dielectric constant of volcanic ash from 4 to 19 GHz , 1996 .

[21]  Ed R. Westwater,et al.  A Steerable Dual-Channel Microwave Radiometer for Measurement of Water Vapor and Liquid in the Troposphere , 1983 .

[22]  Steven Businger,et al.  GPS Sounding of the Atmosphere from Low Earth Orbit: Preliminary Results , 1996 .

[23]  Y. Bar-Sever,et al.  Estimating horizontal gradients of tropospheric path delay with a single GPS receiver , 1998 .

[24]  H. J. Liebe An atmospheric millimeter wave propagation model , 1983 .

[25]  Christian Rocken,et al.  A GPS/MET Sounding through an Intense Upper-Level Front. , 1998 .

[26]  Ed R. Westwater,et al.  Radiometric profiling of temperature, water vapor and cloud liquid water using various inversion methods , 1998 .

[27]  D. C. Hogg,et al.  Measurement of excess radio transmission length on earth-space paths , 1981 .

[28]  Steven Businger,et al.  Sensing atmospheric water vapor with the global positioning system , 1993 .

[29]  P. Barber,et al.  Scattering of electromagnetic waves by arbitrarily shaped dielectric bodies. , 1975, Applied optics.

[30]  A. Niell Global mapping functions for the atmosphere delay at radio wavelengths , 1996 .

[31]  T. Oguchi Electromagnetic wave propagation and scattering in rain and other hydrometeors , 1983, Proceedings of the IEEE.

[32]  Timothy H. Dixon,et al.  An introduction to the global positioning system and some geological applications , 1991 .

[33]  W. G. Melbourne,et al.  The application of spaceborne GPS to atmospheric limb sounding and global change monitoring , 1994 .

[34]  H. R. Pruppacher,et al.  A wind tunnel investigation of the internal circulation and shape of water drops falling at terminal velocity in air , 1970 .

[35]  Lester L. Yuan,et al.  Sensing Climate Change Using the Global Positioning System , 1993 .

[36]  Christian Rocken,et al.  Sensing integrated water vapor along GPS ray paths , 1997 .

[37]  Christian Rocken,et al.  GPS/STORM—GPS Sensing of Atmospheric Water Vapor for Meteorology , 1995 .

[38]  Bradford W. Parkinson,et al.  Global Positioning System , 1995 .

[39]  Christian Rocken,et al.  GPS surveying with 1 mm precision using corrections for atmospheric slant path delay , 1997 .

[40]  J. W. Waters,et al.  2.3. Absorption and Emission by Atmospheric Gases , 1976 .

[41]  E. C. S.,et al.  The Theory of Electric and Magnetic Susceptibilities , 1932, Nature.

[42]  M. Brereton Classical Electrodynamics (2nd edn) , 1976 .

[43]  J. Goldhirsh,et al.  A parameter review and assessment of attenuation and backscatter properties associated with dust storms over desert regions in the frequency range of 1 to 10 GHz , 1982 .

[44]  C. Alber,et al.  Antenna type, mount, height, mixing, and snow effects in high-accuracy GPS observations , 1997 .

[45]  Jothiram Vivekanandan,et al.  Polarimetric radar modeling of mixtures of precipitation particles , 1993, IEEE Trans. Geosci. Remote. Sens..

[46]  J. V. Vleck,et al.  On the Shape of Collision-Broadened Lines , 1945 .

[47]  William I. Rose,et al.  Retrieval of sizes and total masses of particles in volcanic clouds using AVHRR bands 4 and 5 , 1994 .

[48]  Christian Rocken,et al.  A Global Positioning System baseline determination including bias fixing and water vapor radiometer corrections , 1986 .

[49]  T. A. Seliga,et al.  Radar polarimetric backscattering properties of conical Graupel , 1984 .

[50]  G. E. Becker,et al.  Water Vapor Absorption of Electromagnetic Radiation in the Centimeter Wave-Length Range , 1946 .

[51]  C. Alber,et al.  Pointed water vapor radiometer corrections for accurate global positioning system surveying , 1993 .

[52]  D. A. Dunnett Classical Electrodynamics , 2020, Nature.

[53]  A. Kliore,et al.  The neutral atmosphere of Venus as studied with the Mariner V radio occultation experiments , 1971 .

[54]  W. G. Melbourne,et al.  Initial Results of Radio Occultation Observations of Earth's Atmosphere Using the Global Positioning System , 1996, Science.

[55]  Steven Businger,et al.  The Promise of GPS in Atmospheric Monitoring , 1996 .

[56]  Christian Rocken,et al.  Near real‐time GPS sensing of atmospheric water vapor , 1997 .

[57]  Jothiram Vivekanandan,et al.  Rigorous Approach to Polarimetric Radar Modeling of Hydrometeor Orientation Distributions , 1991 .