Optimal length of decomposition sequences composed of imperfect gates

Quantum error correcting circuitry is both a resource for correcting errors and a source for generating errors. A balance has to be struck between these two aspects. Perfect quantum gates do not exist in nature. Therefore, it is important to investigate how flaws in the quantum hardware affect quantum computing performance. We do this in two steps. First, in the presence of realistic, faulty quantum hardware, we establish how quantum error correction circuitry achieves reduction in the extent of quantum information corruption. Then, we investigate fault-tolerant gate sequence techniques that result in an approximate phase rotation gate, and establish the existence of an optimal length $$L_{\text {opt}}$$Lopt of the length L of the decomposition sequence. The existence of $$L_{\text {opt}}$$Lopt is due to the competition between the increase in gate accuracy with increasing L, but the decrease in gate performance due to the diffusive proliferation of gate errors due to faulty basis gates. We present an analytical formula for the gate fidelity as a function of L that is in satisfactory agreement with the results of our simulations and allows the determination of $$L_{\text {opt}}$$Lopt via the solution of a transcendental equation. Our result is universally applicable since gate sequence approximations also play an important role, e.g., in atomic and molecular physics and in nuclear magnetic resonance.

[1]  Yun Seong Nam,et al.  Structural stability of the quantum Fourier transform , 2015, Quantum Inf. Process..

[2]  Martin Rötteler,et al.  Efficient synthesis of universal Repeat-Until-Success circuits , 2014, Physical review letters.

[3]  Bruno O. Shubert,et al.  Random variables and stochastic processes , 1979 .

[4]  M. Plenio,et al.  Conditional generation of error syndromes in fault-tolerant error correction , 1997 .

[5]  William H. Press,et al.  Numerical Recipes: FORTRAN , 1988 .

[6]  M. Mariantoni,et al.  Surface codes: Towards practical large-scale quantum computation , 2012, 1208.0928.

[7]  A. Fowler,et al.  High-threshold universal quantum computation on the surface code , 2008, 0803.0272.

[8]  D. Gottesman An Introduction to Quantum Error Correction and Fault-Tolerant Quantum Computation , 2009, 0904.2557.

[9]  Peter Selinger,et al.  Exact synthesis of multi-qubit Clifford+T circuits , 2012, ArXiv.

[10]  Austin G. Fowler,et al.  Erratum: Scalability of Shor's algorithm with a limited set of rotation gates [Phys. Rev. A 70, 032329 (2004)] , 2007 .

[11]  P. Beckmann Statistical distribution of the amplitude and phase of a multiply scattered field , 1962 .

[12]  Ben Reichardt,et al.  Quantum Universality from Magic States Distillation Applied to CSS Codes , 2005, Quantum Inf. Process..

[13]  L. Hogben Handbook of Linear Algebra , 2006 .

[14]  Reinhold Blümel,et al.  Analytical formulas for the performance scaling of quantum processors with a large number of defective gates , 2015 .

[15]  R. Blumel,et al.  Scaling laws for Shor's algorithm with a banded quantum Fourier transform , 2013, 1302.5844.

[16]  Klaus M. Frahm,et al.  Shor's factorization algorithm with a single control qubit and imperfections , 2008 .

[17]  DiVincenzo,et al.  Fault-Tolerant Error Correction with Efficient Quantum Codes. , 1996, Physical review letters.

[18]  I. Chuang,et al.  Quantum Computation and Quantum Information: Bibliography , 2010 .

[19]  Andrea Fiore,et al.  Ultrafast non-local control of spontaneous emission. , 2013, Nature nanotechnology.

[20]  J. P. Dehollain,et al.  Storing quantum information for 30 seconds in a nanoelectronic device. , 2014, Nature nanotechnology.

[21]  Dmitri Maslov,et al.  Asymptotically optimal approximation of single qubit unitaries by Clifford and T circuits using a constant number of ancillary qubits , 2012, Physical review letters.

[22]  A. Kitaev,et al.  Universal quantum computation with ideal Clifford gates and noisy ancillas (14 pages) , 2004, quant-ph/0403025.

[23]  R. Barends,et al.  Superconducting quantum circuits at the surface code threshold for fault tolerance , 2014, Nature.

[24]  S. Bravyi,et al.  Magic-state distillation with low overhead , 2012, 1209.2426.

[25]  A. J. Short,et al.  Entanglement and the foundations of statistical mechanics , 2005 .

[26]  J. Cirac,et al.  Quantum Computations with Cold Trapped Ions. , 1995, Physical review letters.

[27]  Shor,et al.  Scheme for reducing decoherence in quantum computer memory. , 1995, Physical review. A, Atomic, molecular, and optical physics.

[28]  Yun Seong Nam,et al.  Performance scaling of the quantum Fourier transform with defective rotation gates , 2015, Quantum Inf. Comput..

[29]  Reinhold Blümel,et al.  Robustness of the quantum Fourier transform with respect to static gate defects , 2014 .

[30]  Peter W. Shor,et al.  Algorithms for quantum computation: discrete logarithms and factoring , 1994, Proceedings 35th Annual Symposium on Foundations of Computer Science.

[31]  Dmitri Maslov,et al.  Fast and efficient exact synthesis of single-qubit unitaries generated by clifford and T gates , 2012, Quantum Inf. Comput..

[32]  Athanasios Papoulis,et al.  Probability, Random Variables and Stochastic Processes , 1965 .

[33]  D. Coppersmith An approximate Fourier transform useful in quantum factoring , 2002, quant-ph/0201067.

[34]  Alexander Schrijver,et al.  New Limits on Fault-Tolerant Quantum Computation , 2006, 2006 47th Annual IEEE Symposium on Foundations of Computer Science (FOCS'06).

[35]  B. Reichardt Improved magic states distillation for quantum universality , 2004, quant-ph/0411036.

[36]  John M. Martinis,et al.  Logic gates at the surface code threshold: Superconducting qubits poised for fault-tolerant quantum computing , 2014 .

[37]  Peter Selinger,et al.  Quantum circuits of T-depth one , 2012, ArXiv.

[38]  Juan Pablo Paz,et al.  QUANTUM COMPUTATION WITH PHASE DRIFT ERRORS , 1997 .

[39]  A. Fowler,et al.  Scalability of Shor’s algorithm with a limited set of rotation gates , 2003, quant-ph/0306018.

[40]  Lov K. Grover,et al.  Quantum error correction of systematic errors using a quantum search framework , 2005 .

[41]  Robert Raussendorf,et al.  Topological fault-tolerance in cluster state quantum computation , 2007 .

[42]  Frank Gaitan Quantum Error Correction and Fault Tolerant Quantum Computing , 2008 .

[43]  M. I. Dyakonov,et al.  Revisiting the hopes for scalable quantum computation , 2012, 1210.1782.