Synthesis and Oxygen Reduction Reaction Activity of Atomic and Nanoparticle Gold on Thiol-Functionalized Multiwall Carbon Nanotubes

[1]  K. Phani,et al.  Aqueous CTAB-assisted electrodeposition of gold atomic clusters and their oxygen reduction electrocatalytic activity in acid solutions. , 2010, Angewandte Chemie.

[2]  Shouheng Sun,et al.  Surface- and Structure-Dependent Catalytic Activity of Au Nanoparticles for Oxygen Reduction Reaction† , 2010 .

[3]  T. Goodson,et al.  Critical size for the observation of quantum confinement in optically excited gold clusters. , 2010, Journal of the American Chemical Society.

[4]  R. Murray,et al.  Gold nanoparticles: past, present, and future. , 2009, Langmuir : the ACS journal of surfaces and colloids.

[5]  Y. Shao-horn,et al.  Electrostatic Layer-by-Layer Assembled Au Nanoparticle/MWNT Thin Films: Microstructure, Optical Property, and Electrocatalytic Activity for Methanol Oxidation , 2009 .

[6]  J. Solla-Gullón,et al.  In situ surface characterization and oxygen reduction reaction on shape-controlled gold nanoparticles. , 2009, Journal of nanoscience and nanotechnology.

[7]  Shizhen Zhao,et al.  Continuous thin gold films electroless deposited on fibrous mats of polyacrylonitrile and their electrocatalytic activity towards the oxidation of methanol , 2008 .

[8]  Hongfei Lin,et al.  Size-Dependent Activity of Gold Nanoparticles for Oxygen Electroreduction in Alkaline Electrolyte , 2008 .

[9]  Xiaofeng Zhang,et al.  Sub-two nanometer single crystal Au nanowires. , 2008, Nano letters.

[10]  Min Guo,et al.  Electrocatalytic oxidation of CO on supported gold nanoparticles and submicroparticles: Support and size effects in electrochemical systems , 2007 .

[11]  J. Solla-Gullón,et al.  Electrochemistry of Shape-Controlled Catalysts: Oxygen Reduction Reaction on Cubic Gold Nanoparticles , 2007 .

[12]  K. Swider-Lyons,et al.  Enhanced Oxygen Reduction Activity in Acid by Tin-Oxide Supported Au Nanoparticle Catalysts , 2006 .

[13]  N. Marković,et al.  Anion adsorption, CO oxidation, and oxygen reduction reaction on a Au(100) surface: The pH effect , 2004 .

[14]  Zhi‐Xin Guo,et al.  Self-assembly of gold nanoparticles to carbon nanotubes using a thiol-terminated pyrene as interlinker , 2003 .

[15]  T. Ohsaka,et al.  Hydrodynamic voltammetric studies of the oxygen reduction at gold nanoparticles-electrodeposited gold electrodes , 2002 .

[16]  Marc D. Porter,et al.  Alkanethiolate Gold Cluster Molecules with Core Diameters from 1.5 to 5.2 nm: Core and Monolayer Properties as a Function of Core Size , 1998 .

[17]  G. Tremiliosi‐Filho,et al.  Limit to extent of formation of the quasi-two-dimensional oxide state on Au electrodes , 1997 .

[18]  R. Adzic,et al.  The influence of OH− chemisorption on the catalytic properties of gold single crystal surfaces for oxygen reduction in alkaline solutions , 1996 .

[19]  Frank G. Shi,et al.  Size dependent thermal vibrations and melting in nanocrystals , 1994 .

[20]  H. Angerstein-Kozlowska,et al.  Elementary steps of electrochemical oxidation of single-crystal planes of Au Part II. A chemical and structural basis of oxidation of the (111) plane , 1987 .

[21]  Junliang Zhang,et al.  Catalytic Activity−d-Band Center Correlation for the O2 Reduction Reaction on Platinum in Alkaline Solutions , 2007 .

[22]  Lian Gao,et al.  Modified carbon nanotubes: an effective way to selective attachment of gold nanoparticles , 2003 .