Higher-Order Sliding Modes for the Output-Feedback Control of Nonlinear Uncertain Systems

This chapter examines some aspects of the output-feedback control problem for nonlinear uncertain plants, with special emphasis on possible applications of recent results about higher order sliding modes (HOSMs). This regime is established when the simultaneous, finite-time, zeroing of an output quantity (the sliding quantity), and of a certain number of its derivatives, is ensured. In this work, for any step of an output feedback variable structure control design, namely, the definition of the sliding variable, the synthesis of the control law, and the state estimation, a survey of proposals characterized by a finite-time convergence transient is presented. Some different types of sliding surfaces in the state space, such that the associated constrained motion is characterized by a finite-time converging dynamics, are recalled. The use of a discontinuous control to make them attractive and invariant is then analyzed. Finally, real-time differentiators based on HOSMs for estimating the output derivatives are considered. The twofold objective of the present chapter is to survey the most recent results on HOSMs and to highlight their possible role in improving existing approaches, to motivate and to draw possible lines for future research.

[1]  Giorgio Bartolini,et al.  2-Sliding Mode with Adaptation * , 1999 .

[2]  Giorgio Bartolini,et al.  Digital second-order sliding mode control for uncertain nonlinear systems , 2001, Autom..

[3]  H. Sira-Ramírez On the dynamical sliding mode control of nonlinear systems , 1993 .

[4]  A. Levant Robust exact differentiation via sliding mode technique , 1998 .

[5]  Giorgio Bartolini,et al.  Variable structure control of nonlinear sampled data systems by second order sliding modes , 1998 .

[6]  Alberto Isidori,et al.  A tool for semi-global stabilization of uncertain non-minimum-phase nonlinear systems via output feedback , 2000, IEEE Trans. Autom. Control..

[7]  Vadim I. Utkin,et al.  Sliding Modes in Control and Optimization , 1992, Communications and Control Engineering Series.

[8]  I. Horowitz,et al.  Synthesis of feedback systems with large plant ignorance for prescribed time-domain tolerances† , 1972 .

[9]  Wu-Chung Su,et al.  An O(T2) boundary layer in sliding mode for sampled-data systems , 2000, IEEE Trans. Autom. Control..

[10]  A. Levant,et al.  Higher order sliding: differentiation and black-box control , 2000, Proceedings of the 39th IEEE Conference on Decision and Control (Cat. No.00CH37187).

[11]  Antonella Ferrara,et al.  Adaptive reduction of the control effort in chattering-free sliding-mode control of uncertain nonlinear systems , 1998 .

[12]  A. Tornambè High-gain observers for non-linear systems , 1992 .

[13]  A. Levant Controlling output variables via higher order sliding modes , 1999, 1999 European Control Conference (ECC).

[14]  Giorgio Bartolini,et al.  Digital sliding mode control with O(T3) accuracy , 2000 .

[15]  A. Isidori Nonlinear Control Systems , 1985 .

[16]  Joseph Z. Ben-Asher,et al.  Aircraft Pitch Control via Second-Order Sliding Technique , 2000 .

[17]  W. S. Newman Robust near time-optimal control , 1990 .

[18]  Giorgio Bartolini,et al.  On the Robust Stabilization of Nonlinear Uncertain Systems With Incomplete State Availability , 2000 .

[19]  Tong Heng Lee,et al.  On the design of a nonlinear adaptive variable structure derivative estimator , 2000, IEEE Trans. Autom. Control..

[20]  A. Levant,et al.  Higher order sliding modes and arbitrary-order exact robust differentiation , 2001, 2001 European Control Conference (ECC).

[21]  Christopher I. Byrnes,et al.  Output regulation for nonlinear systems: an overview , 2000 .

[22]  Hassan K. Khalil,et al.  A separation principle for the stabilization of a class of nonlinear systems , 1997, 1997 European Control Conference (ECC).

[23]  A. Levant Sliding order and sliding accuracy in sliding mode control , 1993 .

[24]  A. Levant Universal SISO sliding-mode controllers with finite-time convergence , 2001 .

[25]  I. J. Dilworth,et al.  Mobile radio shadowing loss variability and co-channel signal correlation at 452 MHz , 1996 .

[26]  Giorgio Bartolini,et al.  First and second derivative estimation by sliding mode technique , 2000 .

[27]  A. Isidori,et al.  Global robust output regulation for a class of nonlinear systems , 2000 .

[28]  Miroslav Krstic,et al.  Nonlinear and adaptive control de-sign , 1995 .

[29]  Lorenzo Marconi,et al.  Semiglobal robust output regulation of minimum‐phase nonlinear systems , 2000 .

[30]  Manfredi Maggiore,et al.  Output feedback control : a state-variable approach / , 2000 .

[31]  G. Monsees,et al.  Discrete-time sliding mode control , 2002 .

[32]  A. Teel,et al.  Global stabilizability and observability imply semi-global stabilizability by output feedback , 1994 .

[33]  Xinghuo Yu,et al.  Nonlinear derivative estimator , 1996 .

[34]  Lars Grüne,et al.  Dynamics, Bifurcations and Control , 2002 .

[35]  Giorgio Bartolini,et al.  Global stabilization for nonlinear uncertain systems with unmodeled actuator dynamics , 2001, IEEE Trans. Autom. Control..

[36]  L. Rosier Homogeneous Lyapunov function for homogeneous continuous vector field , 1992 .

[37]  J. Karl Hedrick,et al.  Tracking nonlinear non-minimum phase systems using sliding control , 1993 .

[38]  Xinghuo Yu,et al.  Terminal sliding mode control design for uncertain dynamic systems , 1998 .

[39]  Antonella Ferrara,et al.  On second order sliding mode controllers , 1998 .

[40]  Stefano Battilotti,et al.  A unifying framework for the semiglobal stabilization of nonlinear uncertain systems via measurement feedback , 2001, IEEE Trans. Autom. Control..

[41]  Arie Levant,et al.  Variable measurement step in 2-sliding control , 2000, Kybernetika.

[42]  Arie Levant,et al.  Higher order sliding modes as a natural phenomenon in control theory , 1996 .

[43]  Xinghuo Yu,et al.  Model reference adaptive control systems with terminal sliding modes , 1996 .

[44]  A. Tornambè Output feedback stabilization of a class of non-minimum phase nonlinear systems , 1992 .

[45]  Sarah K. Spurgeon,et al.  OUTPUT TRACKING USING DYNAMIC SLIDING MODE TECHNIQUES , 1997 .

[46]  Arie Levant,et al.  Universal single-input-single-output (SISO) sliding-mode controllers with finite-time convergence , 2001, IEEE Trans. Autom. Control..

[47]  Giorgio Bartolini,et al.  Time-Optimal Stabilization for a Third-Order Integrator: a Robust State-Feedback Implementation , 2002 .

[48]  Aleksej F. Filippov,et al.  Differential Equations with Discontinuous Righthand Sides , 1988, Mathematics and Its Applications.

[49]  M. Thoma,et al.  Variable Structure Systems, Sliding Mode and Nonlinear Control , 1999 .

[50]  Hassan K. Khalil,et al.  Nonlinear Output-Feedback Tracking Using High-gain Observer and Variable Structure Control, , 1997, Autom..