The bipartite Turan number and spectral extremum for linear forests

The bipartite Turán number of a graph H , denoted by ex(m,n;H), is the maximum number of edges in any bipartite graph G = (X,Y ;E) with |X| = m and |Y | = n which does not contain H as a subgraph. In this paper, we determined ex(m,n;Fl) for arbitrary l and appropriately large n with comparing to m and l, where Fl is a linear forest which consists of l vertex disjoint paths. Moreover, the extremal graphs have been characterized. Furthermore, these results are used to obtain the maximum spectral radius of bipartite graphs which does not contain Fl as a subgraph and characterize all extremal graphs which attain the maximum spectral radius. AMS Classification: 05C35; 05C50; 05C38

[1]  Yu Qiu,et al.  Turán Numbers of Bipartite Subdivisions , 2019, SIAM J. Discret. Math..

[2]  Zoltán Füredi,et al.  New Asymptotics for Bipartite Turán Numbers , 1996, J. Comb. Theory, Ser. A.

[3]  Noga Alon,et al.  Turán Numbers of Bipartite Graphs and Related Ramsey-Type Questions , 2003, Combinatorics, Probability and Computing.

[4]  G. Fitzgerald,et al.  'I. , 2019, Australian journal of primary health.

[5]  Xiao-Dong Zhang,et al.  The Turán number of disjoint copies of paths , 2017, Discret. Math..

[6]  M. Simonovits,et al.  The History of Degenerate (Bipartite) Extremal Graph Problems , 2013, 1306.5167.

[7]  L. Lovász,et al.  On the eigenvalues of trees , 1973 .

[8]  Michael Tait,et al.  Degenerate Turán Problems for Hereditary Properties , 2017, Electron. J. Comb..

[9]  Herbert S. Wilf,et al.  Spectral bounds for the clique and independence numbers of graphs , 1986, J. Comb. Theory, Ser. B.

[10]  Huiqiu Lin,et al.  Spectral conditions for the existence of specified paths and cycles in graphs , 2013, 1309.6700.

[11]  Victor Campos,et al.  A Proof for a Conjecture of Gorgol , 2015, Electron. Notes Discret. Math..

[12]  Richard H. Schelp,et al.  An extremal problem for paths in bipartite graphs , 1984, J. Graph Theory.

[13]  László Babai,et al.  Spectral Extrema for Graphs: The Zarankiewicz Problem , 2009, Electron. J. Comb..

[14]  NEAL BUSHAW,et al.  Turán Numbers of Multiple Paths and Equibipartite Forests , 2011, Combinatorics, Probability and Computing.

[15]  Izolda Gorgol,et al.  Turán Numbers for Disjoint Copies of Graphs , 2011, Graphs Comb..

[16]  P. Erdos,et al.  A LIMIT THEOREM IN GRAPH THEORY , 1966 .

[17]  P. Erdös On the structure of linear graphs , 1946 .

[18]  V. Nikiforov Some new results in extremal graph theory , 2011, 1107.1121.

[19]  Xiao-Dong Zhang,et al.  Spectral Extremal Results with Forbidding Linear Forests , 2018, Graphs Comb..

[20]  Xiaodong Zhang,et al.  Turán numbers for disjoint paths , 2016, J. Graph Theory.

[21]  Zoltán Füredi,et al.  An Upper Bound on Zarankiewicz' Problem , 1996, Combinatorics, Probability and Computing.

[22]  P. Erdgs,et al.  ON MAXIMAL PATHS AND CIRCUITS OF GRAPHS , 2002 .

[23]  Hong Liu,et al.  On the Turán Number of Forests , 2012, Electron. J. Comb..

[24]  Vladimir Nikiforov,et al.  The spectral radius of graphs without paths and cycles of specified length , 2009, 0903.5351.

[25]  Mingqing Zhai,et al.  Spectral extrema of graphs with fixed size: Cycles and complete bipartite graphs , 2021, Eur. J. Comb..

[26]  B. Sudakov,et al.  Turán number of bipartite graphs with no 𝐾_{𝑡,𝑡} , 2019, Proceedings of the American Mathematical Society.

[27]  Jian Wang,et al.  The formula for Turán number of spanning linear forests , 2018, Discret. Math..

[28]  Odile Favaron,et al.  Some eigenvalue properties in graphs (conjectures of Graffiti - II) , 1993, Discret. Math..