A COMPREHENSIVE STUDY OF DETECTABILITY AND CONTAMINATION IN DEEP RAPID OPTICAL SEARCHES FOR GRAVITATIONAL WAVE COUNTERPARTS

The first direct detection of gravitational waves (GW) by the ground-based interferometers is expected to occur within the next few years. These interferometers will detect the mergers of compact object binaries composed of neutron stars and/or black holes to a fiducial distance of ~200 Mpc and a localization region of ~100 sq. deg. To maximize the science gains from such GW detections it is essential to identify electromagnetic (EM) counterparts. The most promising such counterpart is optical/IR emission powered by the radioactive decay of r-process elements synthesized in the neutron-rich merger ejecta - a "kilonova". Here we present detailed simulated observations that encompass a range of strategies for kilonova searches during GW follow-up. We assess both the detectability of kilonovae and our ability to distinguish them from a wide range of contaminating transients. We find that if pre-existing template images for the localization region are available, then nightly observations to a depth of i=24 mag and z=23 mag are required to achieve a 95% detection rate; observations that commence within 12 hours of trigger will also capture the kilonova peak and provide stronger constraints on the ejecta properties. We also find that kilonovae can be robustly separated from other types of transients utilizing cuts on color (i-z > 0 mag) and rise time (< 4 days). In the absence of a pre-existing template the observations must reach ~1 mag deeper to achieve the same kilonova detection rate, but robust rejection of contaminants can still be achieved. Motivated by the results of our simulations we discuss the expected performance of current and future wide-field telescopes in achieving these observational goals, and find that prior to LSST the Dark Energy Camera on the Blanco 4-m telescope and Hyper Suprime-Cam on the Subaru 8-m telescope offer the best kilonova discovery potential.

[1]  Joshua R. Smith,et al.  LIGO: The laser interferometer gravitational-wave observatory , 2006, QELS 2006.

[2]  M. Kasliwal,et al.  M31N 2007-11d: A SLOWLY RISING, LUMINOUS NOVA IN M31 , 2008, 0809.1388.

[3]  Kyoto,et al.  THE INFLUENCE OF THERMAL PRESSURE ON EQUILIBRIUM MODELS OF HYPERMASSIVE NEUTRON STAR MERGER REMNANTS , 2013, 1306.4034.

[4]  J. Neill,et al.  EVOLUTION IN THE VOLUMETRIC TYPE Ia SUPERNOVA RATE FROM THE SUPERNOVA LEGACY SURVEY , 2012, 1206.0665.

[5]  R. Chornock,et al.  A SPECTROSCOPIC AND PHOTOMETRIC SURVEY OF NOVAE IN M31 , 2011, 1104.0222.

[6]  K. Hotokezaka,et al.  RADIOACTIVELY POWERED EMISSION FROM BLACK HOLE–NEUTRON STAR MERGERS , 2013, 1310.2774.

[7]  C. Stubbs,et al.  Linking optical and infrared observations with gravitational wave sources through transient variability , 2007, 0712.2598.

[8]  E. Berger,et al.  The Environments of Short-Duration Gamma-Ray Bursts and Implications for their Progenitors , 2010, 1005.1068.

[9]  E. Berger,et al.  WHAT IS THE MOST PROMISING ELECTROMAGNETIC COUNTERPART OF A NEUTRON STAR BINARY MERGER? , 2011, 1108.6056.

[10]  K. S. Thorne,et al.  Predictions for the rates of compact binary coalescences observable by ground-based gravitational-wave detectors , 2010, 1003.2480.

[11]  Mohan Ganeshalingam,et al.  Nearby supernova rates from the Lick Observatory Supernova Search – III. The rate–size relation, and the rates as a function of galaxy Hubble type and colour , 2010, 1006.4613.

[12]  A. MacFadyen,et al.  OFF-AXIS GAMMA-RAY BURST AFTERGLOW MODELING BASED ON A TWO-DIMENSIONAL AXISYMMETRIC HYDRODYNAMICS SIMULATION , 2010, 1006.5125.

[13]  D. Kasen,et al.  THERMONUCLEAR.Ia SUPERNOVAE FROM HELIUM SHELL DETONATIONS: EXPLOSION MODELS AND OBSERVABLES , 2010, 1002.2258.

[14]  S. Smartt,et al.  THE UNUSUALLY LUMINOUS EXTRAGALACTIC NOVA SN 2010U , 2012, 1210.1573.

[15]  B. Paczyński Gamma-ray bursters at cosmological distances , 1986 .

[16]  K. Stanek,et al.  A High Rate of White Dwarf-Neutron Star Mergers & Their Transients , 2009, 0912.0009.

[17]  S. E. Persson,et al.  DEMOGRAPHICS OF THE GALAXIES HOSTING SHORT-DURATION GAMMA-RAY BURSTS , 2013, 1302.3221.

[18]  M. M. Kasliwal,et al.  The afterglow of GRB 050709 and the nature of the short-hard γ-ray bursts , 2005, Nature.

[19]  S. B. Cenko,et al.  The Afterglow, Energetics, and Host Galaxy of the Short-Hard Gamma-Ray Burst 051221a , 2006 .

[20]  Brian D. Metzger,et al.  Outflows from accretion discs formed in neutron star mergers: effect of black hole spin , 2014, 1409.4426.

[21]  B. Metzger,et al.  Nickel-rich outflows produced by the accretion-induced collapse of white dwarfs: light curves and spectra , 2010, 1005.1081.

[22]  B. Metzger,et al.  Delayed outflows from black hole accretion tori following neutron star binary coalescence , 2013, 1304.6720.

[23]  J. Sylvestre Prospects for the Detection of Electromagnetic Counterparts to Gravitational Wave Events , 2003, astro-ph/0303512.

[24]  D. Kasen,et al.  OPACITIES AND SPECTRA OF THE r-PROCESS EJECTA FROM NEUTRON STAR MERGERS , 2013, 1303.5788.

[25]  B. Metzger,et al.  Nickel-rich outflows from accretion discs formed by the accretion-induced collapse of white dwarfs , 2008, 0812.3656.

[26]  S. Rosswog,et al.  The long-term evolution of neutron star merger remnants { II. Radioactively powered transients , 2013, 1307.2943.

[27]  Mansi Kasliwal,et al.  IDENTIFYING ELUSIVE ELECTROMAGNETIC COUNTERPARTS TO GRAVITATIONAL WAVE MERGERS: AN END-TO-END SIMULATION , 2012, 1210.6362.

[28]  K. Hotokezaka,et al.  RADIATIVE TRANSFER SIMULATIONS OF NEUTRON STAR MERGER EJECTA , 2013, 1306.3742.

[29]  M. Shibata,et al.  Gravitational waves and neutrino emission from the merger of binary neutron stars. , 2011, Physical review letters.

[30]  B. Metzger Nuclear-dominated accretion and subluminous supernovae from the merger of a white dwarf with a neutron star or black hole , 2011, 1105.6096.

[31]  Alejandro Clocchiatti,et al.  The Deep Lens Survey Transient Search. I. Short Timescale and Astrometric Variability , 2004 .

[32]  W. Hillebrandt,et al.  2D simulations of the double-detonation model for thermonuclear transients from low-mass carbon-oxygen white dwarfs , 2011, 1111.2117.

[33]  S. Rosswog,et al.  Mergers of Neutron Star-Black Hole Binaries with Small Mass Ratios: Nucleosynthesis, Gamma-Ray Bursts, and Electromagnetic Transients , 2005, astro-ph/0508138.

[34]  A. Rau,et al.  The Nature of the Deep Lens Survey Fast Transients , 2006, astro-ph/0604343.

[35]  B. Metzger,et al.  Red or blue? A potential kilonova imprint of the delay until black hole formation following a neutron star merger , 2014, 1402.4803.

[36]  C. A. Oxborrow,et al.  Planck 2013 results. XVI. Cosmological parameters , 2013, 1303.5076.

[37]  Daniel E. Holz,et al.  LOCALIZING COMPACT BINARY INSPIRALS ON THE SKY USING GROUND-BASED GRAVITATIONAL WAVE INTERFEROMETERS , 2011, 1105.3184.

[38]  J. S. Stuart,et al.  CHARACTERIZING THE OPTICAL VARIABILITY OF BRIGHT BLAZARS: VARIABILITY-BASED SELECTION OF FERMI ACTIVE GALACTIC NUCLEI , 2012, 1209.3770.

[39]  Li-Xin Li,et al.  Transient Events from Neutron Star Mergers , 1998 .

[40]  P. Mezger The “Astronomy and Astrophysics” Division of the European Physical Society , 1973 .

[41]  Federica B. Bianco,et al.  Supernova SN 2011fe from an exploding carbon–oxygen white dwarf star , 2011, Nature.

[42]  C. Ott,et al.  NEUTRINO SIGNATURES AND THE NEUTRINO-DRIVEN WIND IN BINARY NEUTRON STAR MERGERS , 2008, 0806.4380.

[43]  A. Eckart,et al.  Near-infrared flares from accreting gas around the supermassive black hole at the Galactic Centre , 2003, Nature.

[44]  Daniel E. Holz,et al.  Cosmology with coalescing massive black holes , 2002 .

[45]  Gijs Nelemans,et al.  Faint Thermonuclear Supernovae from AM Canum Venaticorum Binaries , 2007, astro-ph/0703578.

[46]  K. Z. Stanek,et al.  A NEW CEPHEID DISTANCE TO THE GIANT SPIRAL M101 BASED ON IMAGE SUBTRACTION OF HUBBLE SPACE TELESCOPE/ADVANCED CAMERA FOR SURVEYS OBSERVATIONS , 2011 .

[47]  E. Berger,et al.  HUBBLE SPACE TELESCOPE OBSERVATIONS OF SHORT GAMMA-RAY BURST HOST GALAXIES: MORPHOLOGIES, OFFSETS, AND LOCAL ENVIRONMENTS , 2009, 0909.1804.

[48]  B. Metzger,et al.  Neutron-rich freeze-out in viscously spreading accretion discs formed from compact object mergers , 2008, 0810.2535.

[49]  N. T. Zinner,et al.  Electromagnetic counterparts of compact object mergers powered by the radioactive decay of r‐process nuclei , 2010, 1001.5029.

[50]  E. Berger,et al.  A SEARCH FOR FAST OPTICAL TRANSIENTS IN THE Pan-STARRS1 MEDIUM-DEEP SURVEY: M-DWARF FLARES, ASTEROIDS, LIMITS ON EXTRAGALACTIC RATES, AND IMPLICATIONS FOR LSST , 2013, 1307.5324.

[51]  Jennifer Barnes,et al.  EFFECT OF A HIGH OPACITY ON THE LIGHT CURVES OF RADIOACTIVELY POWERED TRANSIENTS FROM COMPACT OBJECT MERGERS , 2013, 1303.5787.

[52]  H. Janka,et al.  New fission fragment distributions and r-process origin of the rare-earth elements. , 2013, Physical review letters.

[53]  Anthony L. Piro,et al.  Optical and X-ray emission from stable millisecond magnetars formed from the merger of binary neutron stars , 2013, 1311.1519.

[54]  Tum,et al.  Comprehensive nucleosynthesis analysis for ejecta of compact binary mergers , 2014, 1406.2687.

[55]  Classical novae from the POINT-AGAPE microlensing survey of M31 - II. Rate and statistical characteristics of the nova population , 2005, astro-ph/0509493.

[56]  THE NATURE OF THE DLS FAST TRANSIENTS , 2008 .

[57]  C. Baltay,et al.  FIRST SEARCHES FOR OPTICAL COUNTERPARTS TO GRAVITATIONAL-WAVE CANDIDATE EVENTS , 2013, The Astrophysical Journal Supplement Series.

[58]  Mansi M. Kasliwal,et al.  ON DISCOVERING ELECTROMAGNETIC EMISSION FROM NEUTRON STAR MERGERS: THE EARLY YEARS OF TWO GRAVITATIONAL WAVE DETECTORS , 2013, 1309.1554.

[59]  A. MacFadyen,et al.  SYNTHETIC OFF-AXIS LIGHT CURVES FOR LOW-ENERGY GAMMA-RAY BURSTS , 2011, 1102.4571.

[60]  T. Piran,et al.  Gamma-ray bursts as the death throes of massive binary stars , 1992, astro-ph/9204001.

[61]  S. Gezari,et al.  RAPIDLY EVOLVING AND LUMINOUS TRANSIENTS FROM PAN-STARRS1 , 2014, 1405.3668.

[62]  B. Metzger,et al.  Neutron-powered precursors of kilonovae , 2014, 1409.0544.

[63]  E. Berger,et al.  THE LOCATIONS OF SHORT GAMMA-RAY BURSTS AS EVIDENCE FOR COMPACT OBJECT BINARY PROGENITORS , 2013, 1307.0819.

[64]  Garching,et al.  SYSTEMATICS OF DYNAMICAL MASS EJECTION, NUCLEOSYNTHESIS, AND RADIOACTIVELY POWERED ELECTROMAGNETIC SIGNALS FROM NEUTRON-STAR MERGERS , 2013, 1302.6530.

[65]  Tokyo,et al.  A Discovery of Rapid Optical Flares from Low-Luminosity Active Nuclei in Massive Galaxies , 2005 .

[66]  E. Nakar,et al.  The multimessenger picture of compact object encounters: binary mergers versus dynamical collisions , 2012, 1204.6240.

[67]  E. Ramirez-Ruiz,et al.  Closing in on a Short-Hard Burst Progenitor: Constraints from Early-Time Optical Imaging and Spectroscopy of a Possible Host Galaxy of GRB 050509b , 2005, astro-ph/0505480.

[68]  E. Berger Short-Duration Gamma-Ray Bursts , 2013, 1311.2603.

[69]  S. B. Cenko,et al.  TYPE-Ia SUPERNOVA RATES TO REDSHIFT 2.4 FROM CLASH: THE CLUSTER LENSING AND SUPERNOVA SURVEY WITH HUBBLE , 2013, 1310.3495.

[70]  H. Janka,et al.  Prompt merger collapse and the maximum mass of neutron stars. , 2013, Physical review letters.

[71]  Merging White Dwarf/Black Hole Binaries and Gamma-Ray Bursts , 1998, astro-ph/9808094.

[72]  Tsvi Piran,et al.  Detectable radio flares following gravitational waves from mergers of binary neutron stars , 2011, Nature.

[73]  S. B. Cenko,et al.  The afterglow and elliptical host galaxy of the short γ-ray burst GRB 050724 , 2005, Nature.

[74]  C. Tao,et al.  Spectrophotometric time series of SN 2011fe from the Nearby Supernova Factory , 2013, 1302.1292.