A New Polynomial Interior-Point Algorithm for the Monotone Linear complementarity Problem over Symmetric cones with Full NT-Steps

In this paper, we present a new polynomial interior-point algorithm for the monotone linear complementarity problem over symmetric cones by employing the framework of Euclidean Jordan algebras. At each iteration, we use only full Nesterov and Todd steps. The currently best known iteration bound for small-update method, namely, $O(\sqrt{r}\log{\frac{r}{\varepsilon}})$, is obtained, where r denotes the rank of the associated Euclidean Jordan algebra and e the desired accuracy.

[1]  Yan-Qin Bai,et al.  A new primal-dual path-following interior-point algorithm for semidefinite optimization , 2009 .

[2]  Cornelis Roos,et al.  Primal–dual interior-point algorithms for second-order cone optimization based on kernel functions , 2009 .

[3]  Shuzhong Zhang,et al.  An O(\sqrtn L) Iteration Primal-dual Path-following Method, Based on Wide Neighborhoods and Large Updates, for Monotone LCP , 2005, SIAM J. Optim..

[4]  Zheng-Hai Huang,et al.  Convergence of a smoothing algorithm for symmetric cone complementarity problems with a nonmonotone line search , 2009 .

[5]  Chee-Khian Sim,et al.  Underlying paths in interior point methods for the monotone semidefinite linear complementarity problem , 2007, Math. Program..

[6]  Jiming Peng,et al.  Primal-Dual Interior-Point Methods for Second-Order Conic Optimization Based on Self-Regular Proximities , 2002, SIAM J. Optim..

[7]  M. Muramatsu On a Commutative Class of Search Directions for Linear Programming over Symmetric Cones , 2002 .

[8]  J. Faraut,et al.  Analysis on Symmetric Cones , 1995 .

[9]  Farid Alizadeh,et al.  Extension of primal-dual interior point algorithms to symmetric cones , 2003, Math. Program..

[10]  L. Faybusovich A Jordan-algebraic approach to potential-reduction algorithms , 2002 .

[11]  Kees Roos,et al.  A Comparative Study of Kernel Functions for Primal-Dual Interior-Point Algorithms in Linear Optimization , 2004, SIAM J. Optim..

[12]  Zi-yan Luo,et al.  An $$ \mathcal{O} $$(rL) infeasible interior-point algorithm for symmetric cone LCP via CHKS function , 2009 .

[13]  Kees Roos,et al.  A Full-Newton Step O(n) Infeasible Interior-Point Algorithm for Linear Optimization , 2006, SIAM J. Optim..

[14]  Kees Roos,et al.  Primal-Dual Interior-Point Algorithms for Semidefinite Optimization Based on a Simple Kernel Function , 2005, J. Math. Model. Algorithms.

[15]  Mohamed Achache,et al.  A new primal-dual path-following method for convex quadratic programming , 2006 .

[16]  Naihua Xiu,et al.  A Regularized Smoothing Newton Method for Symmetric Cone Complementarity Problems , 2008, SIAM J. Optim..

[17]  吉瀬 章子 Interior point trajectories and a homogeneous model for nonlinear complementarity problems over symmetric cones , 2011 .

[18]  Jiming Peng,et al.  Self-regular functions and new search directions for linear and semidefinite optimization , 2002, Math. Program..

[19]  Li-Wei Zhang,et al.  Some Properties of a Class of Merit Functions for Symmetric Cone complementarity Problems , 2006, Asia Pac. J. Oper. Res..

[20]  Michael J. Todd,et al.  Self-Scaled Barriers and Interior-Point Methods for Convex Programming , 1997, Math. Oper. Res..

[21]  Zsolt Darvay New Interior Point Algorithms in Linear Programming , 2003 .

[22]  Shinji Hara,et al.  Interior-Point Methods for the Monotone Semidefinite Linear Complementarity Problem in Symmetric Matrices , 1997, SIAM J. Optim..

[23]  Bharath Kumar Rangarajan,et al.  Polynomial Convergence of Infeasible-Interior-Point Methods over Symmetric Cones , 2006, SIAM J. Optim..

[24]  Guoyong Gu,et al.  Full Nesterov-Todd step infeasible interior-point method for symmetric optimization , 2011, Eur. J. Oper. Res..

[25]  Masao Fukushima,et al.  A Combined Smoothing and Regularization Method for Monotone Second-Order Cone Complementarity Problems , 2005, SIAM J. Optim..

[26]  L. Faybusovich Euclidean Jordan Algebras and Interior-point Algorithms , 1997 .

[27]  Masao Fukushima,et al.  Smoothing Functions for Second-Order-Cone Complementarity Problems , 2002, SIAM J. Optim..

[28]  M. Reza Peyghami,et al.  An interior Point Approach for Semidefinite Optimization Using New Proximity Functions , 2009, Asia Pac. J. Oper. Res..

[29]  Manuel V. C. Vieira,et al.  Jordan algebraic approach to symmetric optimization , 2007 .

[30]  Michael J. Todd,et al.  Primal-Dual Interior-Point Methods for Self-Scaled Cones , 1998, SIAM J. Optim..

[31]  Gongyun Zhao,et al.  Interior Point Algorithms For Linear Complementarity Problems Based On Large Neighborhoods Of The Central Path , 1998, SIAM J. Optim..

[32]  Mohamed Achache,et al.  Complexity analysis and numerical implementation of a short-step primal-dual algorithm for linear complementarity problems , 2010, Appl. Math. Comput..