JOHANNES KEPLER UNIVERSITY LINZ Institute of Computational Mathematics Space-time Isogeometric Analysis of Parabolic Evolution Equations
暂无分享,去创建一个
[1] Clemens Hofreither,et al. An algorithm for low-rank approximation of bivariate functions using splines , 2017, J. Comput. Appl. Math..
[2] M. Gander,et al. Analysis of a New Space-Time Parallel Multigrid Algorithm for Parabolic Problems , 2016, SIAM Journal on Scientific Computing.
[3] Helmut Gfrerer,et al. An SQP method for mathematical programs with complementarity constraints with strong convergence properties , 2016, Kybernetika.
[4] Olaf Steinbach,et al. Space-Time Finite Element Methods for Parabolic Problems , 2015, Comput. Methods Appl. Math..
[5] Boris S. Mordukhovich,et al. Complete Characterizations of Tilt Stability in Nonlinear Programming under Weakest Qualification Conditions , 2015, SIAM J. Optim..
[6] Ulrich Langer,et al. Shape Optimization of an Electric Motor Subject to Nonlinear Magnetostatics , 2015, SIAM J. Sci. Comput..
[7] Bert Jüttler,et al. Geometry + Simulation Modules: Implementing Isogeometric Analysis , 2014 .
[8] Ulrich Langer,et al. Functional A Posteriori Error Estimates for Parabolic Time-Periodic Boundary Value Problems , 2014, Comput. Methods Appl. Math..
[9] Alfio Quarteroni,et al. Isogeometric Analysis and error estimates for high order partial differential equations in Fluid Dynamics , 2014 .
[10] Christoph Lehrenfeld,et al. The Nitsche XFEM-DG Space-Time Method and its Implementation in Three Space Dimensions , 2014, SIAM J. Sci. Comput..
[11] Christian Mollet,et al. Stability of Petrov–Galerkin Discretizations: Application to the Space-Time Weak Formulation for Parabolic Evolution Problems , 2014, Comput. Methods Appl. Math..
[12] Maxim A. Olshanskii,et al. Error Analysis of a Space-Time Finite Element Method for Solving PDEs on Evolving Surfaces , 2014, SIAM J. Numer. Anal..
[13] Karsten Urban,et al. An improved error bound for reduced basis approximation of linear parabolic problems , 2013, Math. Comput..
[14] Randolph E. Bank,et al. An error analysis of some higher order space-time moving finite elements , 2013, Comput. Vis. Sci..
[15] Maxim A. Olshanskii,et al. An Eulerian Space-Time Finite Element Method for Diffusion Problems on Evolving Surfaces , 2013, SIAM J. Numer. Anal..
[16] Thomas J. R. Hughes,et al. Explicit trace inequalities for isogeometric analysis and parametric hexahedral finite elements , 2013, Numerische Mathematik.
[17] John A. Evans,et al. Isogeometric boundary element analysis using unstructured T-splines , 2013 .
[18] Hendrik Speleers,et al. THB-splines: The truncated basis for hierarchical splines , 2012, Comput. Aided Geom. Des..
[19] Olaf Steinbach,et al. Refinement of flexible space–time finite element meshes and discontinuous Galerkin methods , 2011, Comput. Vis. Sci..
[20] V. Thomée. Galerkin Finite Element Methods for Parabolic Problems (Springer Series in Computational Mathematics) , 2010 .
[21] F. Tröltzsch. Optimal Control of Partial Differential Equations: Theory, Methods and Applications , 2010 .
[22] Rob P. Stevenson,et al. Space-time adaptive wavelet methods for parabolic evolution problems , 2009, Math. Comput..
[23] Marek Behr,et al. Simplex space–time meshes in finite element simulations , 2008 .
[24] T. Hughes,et al. ISOGEOMETRIC ANALYSIS: APPROXIMATION, STABILITY AND ERROR ESTIMATES FOR h-REFINED MESHES , 2006 .
[25] Tayfun E. Tezduyar,et al. Interface-tracking and interface-capturing techniques for finite element computation of moving boundaries and interfaces , 2006 .
[26] T. Hughes,et al. Isogeometric analysis : CAD, finite elements, NURBS, exact geometry and mesh refinement , 2005 .
[27] Joachim Schöberl,et al. Numerical analysis of nonlinear multiharmonic eddy current problems , 2005, Numerische Mathematik.
[28] Tayfun E. Tezduyar,et al. Enhanced-discretization space time technique (EDSTT) , 2004 .
[29] J. V. D. Vegt,et al. Space--time discontinuous Galerkin finite element method with dynamic grid motion for inviscid compressible flows: I. general formulation , 2002 .
[30] Thomas J. R. Hughes,et al. A space-time Galerkin/least-squares finite element formulation of the Navier-Stokes equations for moving domain problems , 1997 .
[31] Peter Hansbo,et al. Space-time oriented streamline diffusion methods for nonlinear conservation laws in one dimension , 1994 .
[32] T. Tezduyar,et al. A new strategy for finite element computations involving moving boundaries and interfaces—the deforming-spatial-domain/space-time procedure. I: The concept and the preliminary numerical tests , 1992 .
[33] S. Mittal,et al. A new strategy for finite element computations involving moving boundaries and interfaces—the deforming-spatial-domain/space-time procedure. II: Computation of free-surface flows, two-liquid flows, and flows with drifting cylinders , 1992 .
[34] T. Janik,et al. The h‐p version of the finite element method for parabolic equations. II. The h‐p version in time , 1990 .
[35] Sotoshi Yamada,et al. Harmonic field calculation by the combination of finite element analysis and harmonic balance method , 1988 .
[36] Claes Johnson. Numerical solution of partial differential equations by the finite element method , 1988 .
[37] Alexander Ostermann,et al. Multi-grid dynamic iteration for parabolic equations , 1987 .
[38] Jukka Saranen,et al. Streamline diffusion methods for the incompressible Euler and Navier-Stokes equations , 1986 .
[39] Claes Johnson,et al. Finite element methods for linear hyperbolic problems , 1984 .
[40] W. Mayer,et al. Partielle Differentialgleichungen , 1930 .
[41] Bernd Eggers,et al. Nonlinear Functional Analysis And Its Applications , 2016 .
[42] Martin J. Gander,et al. 50 Years of Time Parallel Time Integration , 2015 .
[43] U. Langer,et al. Analysis of Discontinuous Galerkin IGA Approximations to Elliptic Boundary Value Problems , 2014 .
[44] J. Schöberl,et al. Analysis of a Time Multigrid Algorithm for DG-Discretizations in Time , 2014 .
[45] Roman Andreev,et al. Stability of sparse space–time finite element discretizations of linear parabolic evolution equations , 2013 .
[46] Olaf Steinbach,et al. A DG Space-Time Domain Decomposition Method , 2013, Domain Decomposition Methods in Science and Engineering XX.
[47] Martin Neumüller,et al. Space-Time Methods: Fast Solvers and Applications , 2013 .
[48] Rob P. Stevenson,et al. Adaptive Wavelet Schemes for Parabolic Problems: Sparse Matrices and Numerical Results , 2011, SIAM J. Numer. Anal..
[49] Fu Xiaojin,et al. Isogeometric Analysis Toward Integration of CAD and CAE , 2011 .
[50] Graham Horton,et al. Fourier mode analysis of the multigrid waveform relaxation and time-parallel multigrid methods , 2005, Computing.
[51] Jens Lang,et al. Adaptive Multilevel Solution of Nonlinear Parabolic PDE Systems - Theory, Algorithm, and Applications , 2001, Lecture Notes in Computational Science and Engineering.
[52] G. Gustafson,et al. Boundary Value Problems of Mathematical Physics , 1998 .
[53] W. Zulehner,et al. A Finite Element Solver for a Multiharmonic Parabolic Optimal Control Problem , 1997 .
[54] Craig C. Douglas,et al. A Rigorous Analysis of Time Domain Parallelism , 1995, Parallel Algorithms Appl..
[55] S. Vandewalle. Parallel multigrid waveform relaxation for parabolic problems , 1993 .
[56] O. Ladyženskaja. Linear and Quasilinear Equations of Parabolic Type , 1968 .
[57] Ulrich Langer,et al. JOHANNES KEPLER UNIVERSITY LINZ Institute of Computational Mathematics A Robust Preconditioned-MinRes-Solver for Distributed Time-Periodic Eddy Current Optimal Control , 2011 .