Evolution and overview of classical transmitter molecules and their receptors

All the classical transmitter ligand molecules evolved at least 1000 million years ago. With the possible exception of the Porifera and coelenterates (Cnidaria), they occur in all the remaining phyla. All transmitters have evolved the ability to activate a range of ion channels, resulting in excitation, inhibition and biphasic or multiphasic responses. All transmitters can be synthesised in all three basic types of neurones, i.e. sensory, interneurone and motoneurone. However their relative importance as sensory, interneurone or motor transmitters varies widely between the phyla. It is likely that all neurones contain more than one type of releasable molecule, often a combination of a classical transmitter and a neuroactive peptide. Second messengers, i.e. G proteins and phospholipase C systems, appeared early in evolution and occur in all phyla that have been investigated. Although the evidence is incomplete, it is likely that all the classical transmitter receptor subtypes identified in mammals, also occur throughout the phyla. The invertebrate receptors so far cloned show some interesting homologies both between those from different invertebrate phyla and with mammalian receptors. This indicates that many of the basic receptor subtypes, including benzodiazepine subunits, evolved at an early period, probably at least 800 million years ago. Overall, the evidence stresses the similarity between the major phyla rather than their differences, supporting a common origin from primitive helminth stock.

[1]  Novel azole derivatives are antagonists at the inhibitory GABA receptor on the somatic muscle cells of the parasitic nematode Ascaris suum. , 1996, Parasitology.

[2]  M. Darlison,et al.  GABAAreceptor subtypes: which, where and why? , 1995 .

[3]  P. Evans,et al.  Agonist-specific coupling of G-protein-coupled receptors to second-messenger systems. , 1995, Progress in brain research.

[4]  M. Amar,et al.  Cloning of a putative inhibitory amino acid receptor subunit from the parasitic nematode Haemonchus contortus. , 1994, Receptors & channels.

[5]  W. Klein,et al.  Occurrence of muscarinic acetylcholine receptors in wild type and cholinergic mutants of Caenorhabditis elegans , 1983, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[6]  Physiological and pharmacological evidence for histamine as a neurotransmitter in the olfactory CNS of the spiny lobster , 1992, Brain Research.

[7]  P. Evans Multiple receptor types for octopamine in the locust. , 1981, The Journal of physiology.

[8]  S. Moncada,et al.  Nitric oxide: physiology, pathophysiology, and pharmacology. , 1991, Pharmacological reviews.

[9]  H. Dale Pharmacology and Nerve-Endings , 1935 .

[10]  M. S. Berry,et al.  Excitatory, inhibitory and biphasic synaptic potentials mediated by an identified dopamine‐containing neurone. , 1975, Journal of Physiology.

[11]  E. Barnard,et al.  Cloning of a cDNA that encodes an invertebrate glutamate receptor subunit , 1991, FEBS letters.

[12]  R. Glantz,et al.  An arthropod NMDA receptor , 1991, Synapse.

[13]  A. E. Stuart,et al.  Histamine: A putative afferent neurotransmitter in Limulus eyes , 1991, The Journal of comparative neurology.

[14]  D. Sattelle,et al.  L-GLUTAMATE RECEPTORS ON THE CELL BODY MEMBRANE OF AN IDENTIFIED INSECT MOTOR NEURONE , 1989 .

[15]  W. Geraerts,et al.  Co-localized neuropeptides conopressin and ALA-PRO-GLY-TRP-NH2 have antagonistic effects on the vas deferens of lymnaea , 1995, Neuroscience.

[16]  C. Schuster,et al.  Glutamate receptors of Drosophila melanogaster , 1993, FEBS letters.

[17]  C. Schuster,et al.  Molecular analysis of Drosophila glutamate receptors. , 1993, EXS.

[18]  B. Wakimoto,et al.  Characterization and functional expression in mammalian cells of genomic and cDNA clones encoding a Drosophila muscarinic acetylcholine receptor. , 1989, Proceedings of the National Academy of Sciences of the United States of America.

[19]  U. Müller,et al.  The Nitric Oxide/cGMP System in the Antennal Lobe of Apis mellifera is Implicated in Integrative Processing of Chemosensory Stimuli , 1995, The European journal of neuroscience.

[20]  J. Venter,et al.  Cloning, sequence analysis and chromosome localization of a Drosophila muscarinic acetylcholine receptor , 1989, FEBS letters.

[21]  H. Huddart,et al.  Electrical and mechanical characteristics of the atrium of the whelk Busycon canaliculatum. , 1996, General pharmacology.

[22]  J. Linden Cloned adenosine A3 receptors: pharmacological properties, species differences and receptor functions. , 1994, Trends in pharmacological sciences.

[23]  R. North,et al.  A new class of ligand-gated ion channel defined by P2X receptor for extracellular ATP , 1994, Nature.

[24]  M. Elphick,et al.  Nitric oxide synthesis in locust olfactory interneurones , 1995, The Journal of experimental biology.

[25]  W. Pak,et al.  Molecular Characterization of Two Drosophila Guanylate Cyclases Expressed in the Nervous System (*) , 1995, The Journal of Biological Chemistry.

[26]  N Dale,et al.  L-glutamate may be the fast excitatory transmitter of Aplysia sensory neurons. , 1993, Proceedings of the National Academy of Sciences of the United States of America.

[27]  J. Benson,et al.  Responses to GABA by isolated insect neuronal somata: pharmacology and modulation by a benzodiazepine and a barbiturate , 1987, Brain Research.

[28]  D. Sattelle,et al.  Molecular properties and functions of insect acetylcholine receptors , 1987 .

[29]  J. Freschi,et al.  Histamine activates chloride conductance in motor neurons of the lobster cardiac ganglion. , 1992, Journal of Neurophysiology.

[30]  A. Eldefrawi,et al.  Biochemical identification of putative GABA/benzodiazepine receptors in house fly thorax muscles , 1983 .

[31]  R F Rogers,et al.  Diverse current and voltage responses to baclofen in an identified molluscan photoreceptor. , 1995, Journal of neurophysiology.

[32]  R. ffrench-Constant,et al.  Cloning and sequencing of the cyclodiene insecticide resistance gene from the yellow fever mosquito Aedes aegypti , 1993, FEBS letters.

[33]  P. Usherwood,et al.  Sequence of a functional invertebrate GABAA receptor subunit which can form a chimeric receptor with a vertebrate alpha subunit. , 1991, The EMBO journal.

[34]  L. Magazanik,et al.  Different types of glutamate receptors in isolated and identified neurones of the mollusc Planorbarius corneus. , 1991, The Journal of physiology.

[35]  P. Fossier,et al.  A nitric oxide synthase activity is involved in the modulation of acetylcholine release inAplysia ganglion neurons: A histological, voltammetric and electrophysiological study , 1995, Neuroscience.

[36]  D. Sattelle,et al.  γ‐Aminobutyric Acid‐Activated 36Cl‐ Influx: A Functional In Vitro Assay for CNS γ‐Aminobutyric Acid Receptors of Insects , 1987, Journal of neurochemistry.

[37]  T. Tully,et al.  Molecular and biochemical characterization of dNOS: a Drosophila Ca2+/calmodulin-dependent nitric oxide synthase. , 1995, Proceedings of the National Academy of Sciences of the United States of America.

[38]  A. Mauron,et al.  Mapping the main immunogenic region and toxin-binding site of the nicotinic acetylcholine receptor. , 1987, Science.

[39]  E. Borrelli,et al.  Cloning and characterization of a Drosophila tyramine receptor. , 1990, The EMBO journal.

[40]  S. Peroutka,et al.  The molecular evolution of G protein-coupled receptors: Focus on 5-hydroxytryptamine receptors , 1994, Neuropharmacology.

[41]  D. Bertrand,et al.  Physiological Properties of Neuronal Nicotinic Receptors Reconstituted from the Vertebrate β2 Subunit and Drosophilaα Subunits , 1994, The European journal of neuroscience.

[42]  P. Evans A modulatory octopaminergic neurone increases cyclic nucleotide levels in locust skeletal muscle. , 1984, The Journal of physiology.

[43]  E. Gundelfinger,et al.  Expression of the ligand-binding nicotinic acetylcholine receptor subunit D alpha 2 in the Drosophila central nervous system. , 1994, Journal of neurobiology.

[44]  D. McAdoo,et al.  Influences of glycine and neuron R14 on contraction of the anterior aorta of Aplysia. , 1984, The Japanese journal of physiology.

[45]  S. Snyder,et al.  Muscarinic cholinergic binding in rat brain. , 1974, Proceedings of the National Academy of Sciences of the United States of America.

[46]  W. E. Carr,et al.  Chemoreceptors of crustaceans: similarities to receptors for neuroactive substances in internal tissues. , 1987, Environmental health perspectives.

[47]  M. Maines Heme oxygenase: function, multiplicity, regulatory mechanisms, and clinical applications , 1988, FASEB journal : official publication of the Federation of American Societies for Experimental Biology.

[48]  I Kupfermann,et al.  Nine members of the myomodulin family of peptide cotransmitters at the B16-ARC neuromuscular junction of Aplysia. , 1995, Journal of neurophysiology.

[49]  R. Hen,et al.  5-Hydroxytryptamine receptor subtypes in vertebrates and invertebrates , 1994, Neurochemistry International.

[50]  M. O'Shea,et al.  The identification of an octopaminergic neurone and the modulation of a myogenic rhythm in the locust. , 1978, The Journal of experimental biology.

[51]  S. Grim,et al.  Effects of selected cholinergic and anticholinergic drugs on Brugia malayi (Nematoda). , 1983, Comparative biochemistry and physiology. C, Comparative pharmacology and toxicology.

[52]  R. Glantz,et al.  NMDA receptors in invertebrates , 1992 .

[53]  Evans,et al.  The characterization of presynaptic octopamine receptors modulating octopamine release from an identified neurone in the locust , 1984, The Journal of experimental biology.

[54]  D. Sattelle,et al.  Actions of cholinergic pharmacological agents on the cell body membrane of the fast coxal depressor motoneurone of the cockroach (Periplaneta americana) , 1984 .

[55]  P. Calow,et al.  Invertebrates: a new synthesis. , 1988 .

[56]  D. Vassilatis,et al.  Cloning of an avermectin-sensitive glutamate-gated chloride channel from Caenorhabditis elegans , 1994, Nature.

[57]  E. Gundelfinger,et al.  Primary structure of a developmentally regulated nicotinic acetylcholine receptor protein from Drosophila , 1986, The EMBO journal.

[58]  Alastair M. Hosie,et al.  Allosteric modulation of an expressed homo‐oligomeric GABA‐gated chloride channel of Drosophila melanogaster , 1996, British journal of pharmacology.

[59]  D. Madison,et al.  A requirement for the intercellular messenger nitric oxide in long-term potentiation. , 1991, Science.

[60]  D. Weinreich,et al.  Histaminergic synaptic transmission in the cerebral ganglion of Aplysia. , 1985, Journal of neurophysiology.

[61]  T. Roeder A new octopamine receptor class in locust nervous tissue, the octopamine 3 (OA3) receptor. , 1992, Life sciences.

[62]  M. Chichery,et al.  NADPH-diaphorase in a cephalopod brain (Sepia): presence in an analogue of the cerebellum. , 1994, Neuroreport.

[63]  E. Borrelli,et al.  Cloning and characterization of a Drosophila serotonin receptor that activates adenylate cyclase. , 1990, Proceedings of the National Academy of Sciences of the United States of America.

[64]  J. Jacklet,et al.  Neuronal and cellular oscillators , 1989 .

[65]  M. Elphick,et al.  Nitric oxide synthesis and action in an invertebrate brain , 1993, Brain Research.

[66]  H. Huddart,et al.  Actions of GTP on molluscan buccal, cardiac, and visceral smooth muscle , 1995 .

[67]  J. H. Park,et al.  Nitric oxide activates buccal motor patterns in Lymnaea stagnalis. , 1993, Neuroreport.

[68]  Molecular cloning and functional co-expression of a Caenorhabditis elegans nicotinic acetylcholine receptor subunit (acr-2). , 1995, Receptors & channels.

[69]  Y. Pichon Comparative Molecular Neurobiology , 1992, EXS.

[70]  Edwin H. Colbert,et al.  Evolution of the Vertebrates , 1955 .

[71]  G. Burnstock,et al.  G protein-coupled receptors for ATP and other nucleotides: a new receptor family. , 1994, Trends in pharmacological sciences.

[72]  A. Constanti,et al.  Pharmacological characterization of different types of GABA and glutamate receptors in vertebrates and invertebrates , 1979, Progress in Neurobiology.

[73]  D. Hyde,et al.  dgq: A drosophila gene encoding a visual system-specific Gα molecule , 1990, Neuron.

[74]  P. Fossier,et al.  Presynaptic receptors for FMRFamide, histamine and buccalin regulate acetylcholine release at a neuro-neuronal synapse of Aplysia by modulating N-type Ca2+ channels , 1992, Journal of Physiology-Paris.

[75]  L. Holden-Dye,et al.  NADPH diaphorase activity in peptidergic neurones of the parasitic nematode, Ascaris suum , 1996, Parasitology.

[76]  G Burnstock,et al.  Nomenclature and Classification of Purinoceptors* , 2005 .

[77]  H. Betz,et al.  Molecular cloning of an invertebrate glutamate receptor subunit expressed in Drosophila muscle. , 1991, Science.

[78]  E. Gundelfinger,et al.  Sequence of a Drosophila Ligand‐Gated Ion‐Channel Polypeptide with an Unusual Amino‐Terminal Extracellular Domain , 1994, Journal of neurochemistry.

[79]  Y. Dudai,et al.  Aminergic Receptors in Drosophila melanogaster: Properties of [3H]Dihydroergocryptine Binding Sites , 1982, Journal of neurochemistry.

[80]  J. Nathanson,et al.  Isolation and N‐terminal amino acid sequence of an octopamine ligand binding protein , 1989, FEBS letters.

[81]  H. Pflüger,et al.  Colocalization of octopamine and FMRFamide related peptide in identified heart projecting (DUM) neurones in the locust revealed by immunocytochemistry , 1994, Brain Research.

[82]  Monica Driscoll,et al.  Mechanosensory signalling in C. elegans mediated by the GLR-1 glutamate receptor , 1995, Nature.

[83]  George G. Lunt,et al.  Evolutionary history of the ligand-gated ion-channel superfamily of receptors , 1995, Trends in Neurosciences.

[84]  A. Takeuchi,et al.  The effect on crayfish muscle of iontophoretically applied glutamate , 1964, The Journal of physiology.

[85]  M. Darlison Invertebrate GABA and glutamate receptors: molecular biology reveals predictable structures but some unusual pharmacologies , 1992, Trends in Neurosciences.

[86]  M. Saito,et al.  Differential expression of glutamate receptors in Xenopus oocytes injected with messenger RNA from lobster muscle , 1988, Neuroscience Letters.

[87]  W. Winlow,et al.  A quantitative analysis of the biogenic amines in the central ganglia of the pond snail, Lymnaea stagnalis (L.) , 1994 .

[88]  A GABAB receptor on an identified insect motor neurone , 1995, The Journal of experimental biology.

[89]  J. A. Peters,et al.  Cloning and functional expression of a Drosophila gamma-aminobutyric acid receptor. , 1994, Proceedings of the National Academy of Sciences of the United States of America.

[90]  H. Shinozaki,et al.  A metabotropic L-glutamate receptor agonist: pharmacological difference between rat central neurones and crayfish neuromuscular junctions. , 1992, Comparative biochemistry and physiology. C, Comparative pharmacology and toxicology.

[91]  L. Holden-Dye,et al.  Histochemical mapping of NADPH diaphorase in the nervous system of the parasitic nematode Ascaris suum , 1995, Parasitology.

[92]  J. Venter,et al.  Cloning, localization, and permanent expression of a Drosophila octopamine receptor , 1990, Neuron.

[93]  A novel kainate receptor in the insect nervous system , 1992, Neuroscience Letters.

[94]  D. Sattelle,et al.  GABA receptors on the cell-body membrane of an identified insect motor neuron , 1988, Proceedings of the Royal Society of London. Series B. Biological Sciences.

[95]  A. Roberts,et al.  Excitatory amino acid receptors in Xenopus embryo spinal cord and their role in the activation of swimming. , 1984, The Journal of physiology.

[96]  P. Evans,et al.  N-methyl-D-aspartate (NMDA) and non-NMDA type glutamate receptors are present on squid giant axon Schwann cells. , 1991, The Journal of experimental biology.

[97]  R. Walker,et al.  An analysis of the adenosine receptors responsible for modulation of an excitatory acetylcholine response on an identified Helix neuron. , 1987, Comparative biochemistry and physiology. C, Comparative pharmacology and toxicology.

[98]  D. Cully,et al.  Avermectin-sensitive chloride currents induced by Caenorhabditis elegans RNA in Xenopus oocytes. , 1991, Molecular pharmacology.

[99]  H. Niznik,et al.  A primordial dopamine D1‐like adenylyl cyclase‐linked receptor from Drosophila melanogaster displaying poor affinity for benzazepines , 1995, FEBS letters.

[100]  S. Peroutka 5-Hydroxytryptamine receptors in vertebrates and invertebrates: Why are there so many? , 1994, Neurochemistry International.

[101]  J. D. Reid,et al.  The molecular cloning of the squid (Loligo forbesi) visual Gq-alpha subunit and its expression in Saccharomyces cerevisiae. , 1993, Biochemical Journal.

[102]  S. Gould The evolution of life on the earth. , 1994, Scientific American.

[103]  L. Holden-Dye,et al.  Evolutionary aspects of transmitter molecules, their receptors and channels , 1991, Parasitology.

[104]  R. Planta,et al.  Cloning of a molluscan G protein alpha subunit of the Gq class which is expressed differentially in identified neurons. , 1995, European journal of biochemistry.

[105]  F. Dubas Actions of Putative Amino Acid Neurotransmitters on the Neuropile Arborizations of Locust Flight Motoneurones , 1991 .

[106]  Correlation of insulin pretreatment and insulin binding of Amoeba proteus—a new technique for evaluation , 1992 .

[107]  H. Betz,et al.  Glutamate receptors of Drosophila melanogaster: cloning of a kainate-selective subunit expressed in the central nervous system. , 1992, Proceedings of the National Academy of Sciences of the United States of America.

[108]  J. Blankenship,et al.  Modulation of arterial muscle contraction in Aplysia by glycine and neuron R14 , 1981, Brain Research.

[109]  P. Evans,et al.  Agonist‐specific coupling of a cloned Drosophila octopamine/tyramine receptor to multiple second messenger systems. , 1994, The EMBO journal.

[110]  U. Boschert,et al.  A family of Drosophila serotonin receptors with distinct intracellular signalling properties and expression patterns. , 1992, The EMBO journal.

[111]  C. Löfstedt,et al.  Functional specialization of olfactory glomeruli in a moth. , 1992, Science.

[112]  H. Prange,et al.  Dive and breath hold metabolism of the brown water snake, Natrix taxispilota. , 1976, Comparative biochemistry and physiology. A, Comparative physiology.

[113]  D. Julius,et al.  New structural motif for ligand-gated ion channels defined by an ionotropic ATP receptor , 1994, Nature.

[114]  J. Kehoe,et al.  The physiological role of three acetylcholine receptors in synaptic transmission in Aplysia , 1972, The Journal of physiology.

[115]  Alan Gelperin,et al.  Nitric oxide mediates network oscillations of olfactory interneurons in a terrestrial mollusc , 1994, Nature.

[116]  J. Jacklet Nitric oxide is used as an orthograde cotransmitter at identified histaminergic synapses. , 1995, Journal of neurophysiology.

[117]  P. Usherwood Insect Glutamate Receptors , 1994 .

[118]  E. Gundelfinger How complex is the nicotinic receptor system of insects? , 1992, Trends in Neurosciences.

[119]  W. Winlow,et al.  Nitric oxide synthase-immunoreactive cells in the CNS and periphery of Lymnaea. , 1994, Neuroreport.

[120]  Henry Dale,et al.  THE ACTION OF CERTAIN ESTERS AND ETHERS OF CHOLINE, AND THEIR RELATION TO MUSCARINE , 1914 .

[121]  S. J. Dunbar,et al.  The action of iontophoretically applied L-glutamate on an insect visceral muscle , 1983 .

[122]  A. Bulloch,et al.  Evidence for the presence, synthesis, immunoreactivity, and uptake of GABA in the nervous system of the snail Helisoma trivolvis , 1991, The Journal of comparative neurology.

[123]  Grigori N. Orlovsky,et al.  Pharmacologically induced elements of the hunting and feeding behavior in the pteropod mollusk Clione limacina. I: Effects of GABA , 1993 .

[124]  E. Barnard,et al.  A novel invertebrate GABAA receptor‐like polypeptide Sequence and pattern of gene expression , 1993, FEBS letters.

[125]  R. ffrench-Constant,et al.  Molecular cloning and transformation of cyclodiene resistance in Drosophila: an invertebrate gamma-aminobutyric acid subtype A receptor locus. , 1991, Proceedings of the National Academy of Sciences of the United States of America.

[126]  A. Baumann,et al.  Primary structure and functional characterization of a Drosophila dopamine receptor with high homology to human D1/5 receptors. , 1994, Receptors & channels.

[127]  D. D. Mosser,et al.  Temperature studies and recent advances with fish cells in vitro , 1992 .

[128]  A. De Loof,et al.  Characterization of a Cloned Locust Tyramine Receptor cDNA by Functional Expression in Permanently Transformed Drosophila S2 Cells , 1995, Journal of neurochemistry.

[129]  S. Hill,et al.  Distribution, properties, and functional characteristics of three classes of histamine receptor. , 1990, Pharmacological reviews.

[130]  M. Ichinose,et al.  Nitric oxide induces an increased Na+ conductance in identified neurons of Aplysia , 1995, Brain Research.

[131]  H. Yamamura,et al.  Molecular pharmacology of muscarinic receptor heterogeneity. , 1989, Life sciences.

[132]  B. Habecker,et al.  Isolation, sequence, and functional expression of the mouse M1 muscarinic acetylcholine receptor gene. , 1988, The Journal of biological chemistry.

[133]  R. Walker The action of kainic acid and quisqualic acid on the glutamate receptors of three identifiable neurones from the brain of the snail, Helix aspersa. , 1976, Comparative biochemistry and physiology. C: Comparative pharmacology.

[134]  A. Wolstenholme,et al.  The β‐Subunit of Caenorhabditis elegans Avermectin Receptor Responds to Glycine and Is Encoded by Chromosome 1 , 1995, Journal of neurochemistry.

[135]  J. Kaplan,et al.  Synaptic code for sensory modalities revealed by C. elegans GLR-1 glutamate receptor , 1995, Nature.

[136]  A. Murphy,et al.  Glutamate as a putative neurotransmitter in the buccal central pattern generator of Helisoma trivolvis. , 1991, Journal of neurophysiology.

[137]  P. Camilli,et al.  Regulated Secretory Pathways of Neurons and Their Relation to the Regulated Secretory Pathway of Endocrine Cells , 1987 .

[138]  G. Shepherd,et al.  Regulation of cyclic nucleotide-gated channels and membrane excitability in olfactory receptor cells by carbon monoxide. , 1995, Journal of neurophysiology.

[139]  OCTOPAMINERGIC MODULATION OF THE FOREWING STRETCH RECEPTOR IN THE LOCUST LOCUSTA MIGRATORIA , 1990 .

[140]  Mcfarlane,et al.  The role of L-Dopa in the nervous system of sea anemones: a putative inhibitory transmitter in tentacles , 1995, Journal of Experimental Biology.

[141]  R. Harvey,et al.  Molluscan ligand-gated ion-channel receptors. , 1993, EXS.

[142]  T. Dawson,et al.  Gases as biological messengers: nitric oxide and carbon monoxide in the brain , 1994, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[143]  G. Burnstock,et al.  Responses of the rectum and oesophagus of the snail Helix aspersa to purine nucleotides and nucleosides. , 1992, Comparative biochemistry and physiology. C, Comparative pharmacology and toxicology.

[144]  H. L. Corronc,et al.  M2-like presynaptic receptors modulate acetylcholine release in the cockroach (Periplaneta americana) central nervous system , 1991 .

[145]  A. Conte,et al.  Nitric oxide synthase activity in molluscan hemocytes , 1995, FEBS letters.

[146]  M. Greenberg,et al.  Actions of adenylyl compounds in invertebrates from several phyla: Evidence for internal purinoceptors , 1988 .

[147]  M. Loeb,et al.  Insect Neurochemistry and Neurophysiology · 1986 , 1987, Experimental and Clinical Neuroscience.

[148]  E. Kandel,et al.  Cloning and characterization of two related serotonergic receptors from the brain and the reproductive system of Aplysia that activate phospholipase C , 1995, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[149]  P. Benjamin,et al.  A cholinergic modulatory interneuron in the feeding system of the snail, Lymnaea. , 1993, Journal of neurophysiology.

[150]  S. G. Shimada,et al.  ACTH response induced in capsaicin‐desensitized rats by intravenous injection of interleukin‐1 or prostaglandin E. , 1994, The Journal of physiology.

[151]  R. Tsien,et al.  Dominant role of N-type Ca2+ channels in evoked release of norepinephrine from sympathetic neurons. , 1988, Science.

[152]  L. Morón,et al.  Putative nitric oxide synthase (NOS)-containing cells in the central nervous system of the leech,Hirudo medicinalis: NADPH-diaphorase histochemistry , 1996, Brain Research.

[153]  E. Gundelfinger,et al.  Neuronal Nicotinic Acetylcholine Receptors in Drosophila: Antibodies Against an α‐Like and a Non‐α‐Subunit Recognize the Same High‐Affinity α‐Bungarotoxin Binding Complex , 1991, Journal of neurochemistry.

[154]  G. Mpitsos,et al.  Evidence for heterogeneity of muscarinic receptors in the mollusc Pleurobranchaea , 1988, Brain Research Bulletin.

[155]  W. Pak,et al.  Genetic and molecular identification of a Drosophila histidine decarboxylase gene required in photoreceptor transmitter synthesis. , 1993, The EMBO journal.

[156]  A. E. Stuart,et al.  Biochemical and physiological evidence that histamine is the transmitter of barnacle photoreceptors , 1989, Visual Neuroscience.

[157]  D. Cully,et al.  Expression of a glutamate-activated chloride current in Xenopus oocytes injected with Caenorhabditis elegans RNA: evidence for modulation by avermectin. , 1992, Brain research. Molecular brain research.

[158]  F. Hannan,et al.  Muscarinic acetylcholine receptors in invertebrates: comparisons with homologous receptors from vertebrates. , 1993, EXS.

[159]  J. Launay,et al.  Drosophila 5-HT2 serotonin receptor: coexpression with fushi-tarazu during segmentation. , 1995, Proceedings of the National Academy of Sciences of the United States of America.

[160]  Y. Sun,et al.  Developmental expression of heme oxygenase isozymes in rat brain. Two HO-2 mRNAs are detected. , 1990, The Journal of biological chemistry.

[161]  P. Seeburg,et al.  GABAA receptor channels: from subunits to functional entities , 1992, Current Opinion in Neurobiology.

[162]  C. Grimmelikhuijzen Coexistence of neuropeptides in hydra , 1983, Neuroscience.

[163]  B. Budelmann,et al.  The effect of l-glutamate on the afferent resting activity in the cephalopod statocyst , 1994, Brain Research.

[164]  N. Akaike,et al.  GABA and lioresal actions on the identified Onchidium neuron. , 1983, The Japanese journal of physiology.

[165]  E. Gundelfinger,et al.  Immunohistochemical localization of a ligand‐binding and a structural subunit of nicotinic acetylcholine receptors in the central nervous system of Drosophila melanogaster , 1993, The Journal of comparative neurology.

[166]  M. Berridge,et al.  Inositol trisphosphate and diacylglycerol: two interacting second messengers. , 1987, Annual review of biochemistry.

[167]  M. Maines Carbon Monoxide: An Emerging Regulator of cGMP in the Brain , 1993, Molecular and Cellular Neuroscience.

[168]  E. Gundelfinger,et al.  Cross-linking of 125I-α-bungarotoxin to Drosophila head membranes identifies a 42 kDa toxin binding polypeptide , 1992, Neuroscience Letters.

[169]  A. Bulloch,et al.  Serotonin receptor cDNA cloned from Lymnaea stagnalis. , 1993, Proceedings of the National Academy of Sciences of the United States of America.

[170]  D. M. Soderlund,et al.  Characterization of a Putative γ-Aminobutyric-Acid (GABA) Receptor β-Subunit Gene from Drosophila melanogaster , 1993 .

[171]  A. Gelperin NITRIC OXIDE, ODOUR PROCESSING AND PLASTICITY , 1993 .

[172]  M. Siegler,et al.  Anatomy and physiology of spiking local and intersegmental interneurons in the median neuroblast lineage of the grasshopper , 1991, The Journal of comparative neurology.

[173]  E. Gundelfinger,et al.  Characterization of an invertebrate nicotinic acetylcholine receptor gene: The ard gene of Drosophila melanogaster , 1988, FEBS letters.

[174]  J. Kehoe Glutamate activates a K+ conductance increase in aplysia neurons that appears to be independent of G proteins , 1994, Neuron.

[175]  J. Jacklet,et al.  Nitric Oxide as a Putative Transmitter in Aplysia: Neural Circuits and Membrane Effects , 1993 .

[176]  M. Jackson,et al.  Functional expression of insecticide‐resistant GABA receptors from the mosquito Aedes aegypti , 1994, Insect molecular biology.

[177]  P. Spierer,et al.  Conservation of neural nicotinic acetylcholine receptors from Drosophila to vertebrate central nervous systems. , 1988, EMBO Journal.

[178]  L. Holden-Dye,et al.  The pharmacology of cholinoceptors on the somatic muscle cells of the parasitic nematode Ascaris suum. , 1991, The Journal of experimental biology.

[179]  E. Kandel,et al.  Lipoxygenase metabolites of arachidonic acid as second messengers for presynaptic inhibition of Aplysia sensory cells , 1987, Nature.

[180]  P. E. Lloyd,et al.  Frequency-dependent release of peptide cotransmitters from identified cholinergic motor neurons in Aplysia. , 1989, Proceedings of the National Academy of Sciences of the United States of America.

[181]  G protein is coupled to presynaptic glutamate and GABA receptors in lobster neuromuscular synapse. , 1990, Journal of neurophysiology.

[182]  R. ffrench-Constant,et al.  Drosophila Cyclodiene Resistance Gene Shows Conserved Genomic Organization with Vertebrate γ‐Aminobutyric AcidA Receptors , 1992, Journal of neurochemistry.

[183]  H. Huddart,et al.  Modulatory mechanisms in the isolated internally perfused ventricle of the whelk Busycon canaliculatum. , 1996, General pharmacology.

[184]  A. Bulloch,et al.  Dopaminergic transmission between identified neurons from the mollusk, Lymnaea stagnalis. , 1995, Journal of neurophysiology.

[185]  Takashi Miyata,et al.  Primary structure of α-subunit precursor of Torpedo californica acetylcholine receptor deduced from cDNA sequence , 1982, Nature.

[186]  P. Usherwood,et al.  The site of action of ibotenic acid and the identification of two populations of glutamate receptors on insect muscle-fibres. , 1973, Comparative and general pharmacology.

[187]  R. Elofsson,et al.  Is nitric oxide (NO) produced by invertebrate neurones? , 1993, Neuroreport.

[188]  R. ffrench-Constant,et al.  A point mutation in a Drosophila GABA receptor confers insecticide resistance , 1993, Nature.

[189]  S. Buckingham,et al.  Sequence and functional expression of a single alpha subunit of an insect nicotinic acetylcholine receptor. , 1990, The EMBO journal.

[190]  S. Heinemann,et al.  Cloned glutamate receptors. , 1994, Annual review of neuroscience.

[191]  K. Staras,et al.  Behavioral role for nitric oxide in chemosensory activation of feeding in a mollusc , 1995, Journal of Neuroscience.