Glycolipids from a colloid chemical point of view.

Glycolipids are a group of compounds with a broad range of applications. Two types of glycolipids (alkylpolyglycosides and gangliosides) were examined with regard to their physicochemical properties. Despite their structural differences, they have in common that they are amphiphilic molecules and able to aggregate to form monolayers, bilayers, micelles, lyothropic mesophases or vesicles. The structures of glycolipid micelles were investigated by different experimental techniques in addition to molecular dynamic simulations. The knowledge of the physicochemical properties of gangliosides enables a better understanding of their biological functions. Structural features were obtained for the monosialogangliosides GM1, GM2 and GT1b from bovine brain by means of mass spectrometry. Further the aggregation behaviour was determined by small-angle neutron and dynamic light scattering experiments. Interaction studies of these compounds were carried out by means of surface plasmon resonance using gangliosides incorporated liposomes. They were used as model membranes that interact with the lectins WGA, RCA and HPA. The interaction of lectins immobilized to a modified silicon surface was investigated by in-situ ellipsometry.

[1]  G. Lagaly,et al.  Dispersionen und Emulsionen , 1997 .

[2]  Arnold Grubenmann,et al.  Formulation Technology: Emulsions, Suspensions, Solid Forms , 2001 .

[3]  L. Svennerholm CHROMATOGRAPHlC SEPARATION OF HUMAN BRAIN GANGLIOSIDES * , 1963, Journal of neurochemistry.

[4]  R. Zana,et al.  Ultrasonic absorption studies of surfactant exchange between micelles and bulk phase in aqueous micellar solutions of nonionic surfactants with a short alkyl chain. 3. Surfactants with a sugar head group , 1992 .

[5]  J. Peter-Katalinic,et al.  Nano-electrospray ionization quadrupole time-of-flight tandem mass spectrometric analysis of a ganglioside mixture from human granulocytes. , 2000, Rapid communications in mass spectrometry : RCM.

[6]  Lizhong He,et al.  Molecular dynamics characterization of n-octyl-beta-D-glucopyranoside micelle structure in aqueous solution. , 2006, Journal of molecular graphics & modelling.

[7]  Sullards Mc Analysis of sphingomyelin, glucosylceramide, ceramide, sphingosine, and sphingosine 1-phosphate by tandem mass spectrometry. , 2000 .

[8]  B. Lee,et al.  The interpretation of protein structures: estimation of static accessibility. , 1971, Journal of molecular biology.

[9]  R. Macdonald,et al.  Small-volume extrusion apparatus for preparation of large, unilamellar vesicles. , 1991, Biochimica et biophysica acta.

[10]  K. Shinoda,et al.  Surface Chemical Properties in Aqueous Solutions of Non-ionic Surfactants Octyl Glycol Ether, α-Octyl Glyceryl Ether and Octyl Glucoside , 1959 .

[11]  L. Cantu',et al.  Aggregative properties of gangliosides in solution. , 1994, Chemistry and physics of lipids.

[12]  R. Zana,et al.  Aggregation Behavior of Sugar Surfactants in Aqueous Solutions: Effects of Temperature and the Addition of Nonionic Polymers. , 1998, Journal of colloid and interface science.

[13]  Kell Mortensen,et al.  Analytical treatment of the resolution function for small-angle scattering , 1990 .

[14]  Hoover,et al.  Canonical dynamics: Equilibrium phase-space distributions. , 1985, Physical review. A, General physics.

[15]  T. Darden,et al.  A smooth particle mesh Ewald method , 1995 .

[16]  K. Nierhaus,et al.  Proton- and deuteron spin targets in bioligical structure research , 1995 .

[17]  F. Nilsson,et al.  Physical−Chemical Properties of the n-Octyl β-d-Glucoside/Water System. A Phase Diagram, Self-Diffusion NMR, and SAXS Study , 1996 .

[18]  Thomas Graham,et al.  X. Liquid diffusion applied to analysis , 1861, Philosophical Transactions of the Royal Society of London.

[19]  F. Bates,et al.  Absolute calibration of small‐angle neutron scattering data , 1987 .

[20]  Jeanette Adams,et al.  Structure determination of sphingolipids by mass spectrometry , 1993 .

[21]  S. Levery,et al.  Comparative analysis of ceramide structural modification found in fungal cerebrosides by electrospray tandem mass spectrometry with low energy collision-induced dissociation of Li+ adduct ions. , 2000, Rapid communications in mass spectrometry : RCM.

[22]  M.Alan Chester,et al.  IUPAC-IUB joint commission on biochemical nomenclature (JCBN) nomenclature of glycolipids: Recommendations 1997 , 1999 .

[23]  M. Karplus,et al.  CHARMM: A program for macromolecular energy, minimization, and dynamics calculations , 1983 .

[24]  A. D'aprano,et al.  QELS and SANS studies of octyl-β-glucoside micellar solutions☆ , 1996 .

[25]  P. Somasundaran,et al.  Electrolyte Effects on the Surface Tension and Micellization of n-Dodecyl β-d-Maltoside Solutions , 1996 .

[26]  The Molecular Structure of Sodium Octanoate Micelles Studied by Molecular Dynamics Computer Experiments , 1997 .

[27]  Chrystal D. Bruce,et al.  Molecular dynamics simulation of sodium dodecyl sulfate micelle in water: Micellar structural characteristics and counterion distribution , 2002 .

[28]  M. Malfois,et al.  Comparison of Small-Angle Scattering Methods for the Structural Analysis of Octyl-β-maltopyranoside Micelles , 2002 .

[29]  J. Peter-Katalinic,et al.  Direct analysis of silica gel extracts from immunostained glycosphingolipids by nanoelectrospray ionization quadrupole time-of-flight mass spectrometry. , 2004, Analytical chemistry.

[30]  Lottermoser Die Welt der vernachlässigten Dimensionen, eine Einführung in die moderne Kolloidchemie mit besonderer Berücksichtigung ihrer Anwendungen. Von Prof. Wolfgang Ostwald. 7. und 8. Auflage. Verlag von Theodor Steinkopff, Dresden und Leipzig 1922. , 1924, Zeitschrift für Elektrochemie und angewandte physikalische Chemie.

[31]  T. C. Wong,et al.  Molecular dynamics simulation of adrenocorticotropin (1-10) peptide in a solvated dodecylphosphocholine micelle. , 2001, Biopolymers.

[32]  T. Takagi,et al.  Micellar properties of octylglucoside in aqueous solutions , 1990 .

[33]  W. Ostwald Die Welt der vernachlässigten Dimensionen : eine Einführung in die moderne Kolloidchemie. mit besonderer Berücksichtigung ihrer Anwendungen , 1920 .

[34]  Bernard R. Brooks,et al.  Solvent-Induced Forces between Two Hydrophilic Groups , 1994 .

[35]  Drew Myers,et al.  Surfaces, interfaces, and colloids , 1991 .

[36]  D. van der Spoel,et al.  Molecular dynamics simulations of dodecylphosphocholine micelles at three different aggregate sizes: Micellar structure and chain relaxation , 2000 .

[37]  Richard W. Pastor,et al.  Molecular Dynamics Simulations of Octyl Glucoside Micelles: Dynamic Properties , 2001 .

[38]  L. Cantu',et al.  Experimental evidence of a temperature-related conformational change of the hydrophilic portion of gangliosides. , 1996, Chemistry and physics of lipids.

[39]  W. C. Griffin Calculation of HLB values of non-ionic surfactants , 1954 .

[40]  W. C. Griffin Classification of surface-active agents by "HLB" , 1946 .

[41]  F. Kiechle,et al.  Glycosphingolipids in Health and Disease , 2004 .

[42]  M.Alan Chester,et al.  IUPAC-IUB Joint Commission on Biochemical Nomenclature (JCBN). Nomenclature of glycolipids--recommendations 1997. , 1998, European journal of biochemistry.

[43]  S. Hakomori Traveling for the glycosphingolipid path , 2000, Glycoconjugate Journal.

[44]  Alan E. Mark,et al.  Molecular dynamics simulation of the kinetics of spontaneous micelle formation , 2000 .

[45]  Kevin J. Naidoo,et al.  Carbohydrate solution simulations: Producing a force field with experimentally consistent primary alcohol rotational frequencies and populations , 2002, J. Comput. Chem..

[46]  H. Gabius,et al.  Biological Information Transfer Beyond the Genetic Code: The Sugar Code , 2000, Naturwissenschaften.

[47]  C. Costello,et al.  Tandem mass spectrometry of glycolipids. , 1990, Methods in enzymology.

[48]  R. Pastor,et al.  Micelle-bound conformation of a hairpin-forming peptide: combined NMR and molecular dynamics study. , 2002, Biopolymers.

[49]  R. J. Hunter Foundations of Colloid Science , 1987 .

[50]  M. Bonicelli,et al.  Solution properties of octyl-β-D-glucoside. Part 2: Thermodynamics of micelle formation , 1994 .

[51]  I. Rico-Lattes,et al.  Anomeric effects on the structure of micelles of alkyl maltosides in water , 1997 .

[52]  K. Furukawa,et al.  Biosynthesis and functions of gangliosides: recent advances , 1998, Glycoconjugate Journal.

[53]  D. H. Everett,et al.  Manual of Symbols and Terminology for Physicochemical Quantities and Units, Appendix II: Definitions, Terminology and Symbols in Colloid and Surface Chemistry , 1972 .