Multiscale Polymer Composites: A Review of the Interlaminar Fracture Toughness Improvement

Composite materials are prone to delamination as they are weaker in the thickness direction. Carbon nanotubes (CNTs) are introduced as a multiscale reinforcement into the fiber reinforced polymer composites to suppress the delamination phenomenon. This review paper presents the detailed progress made by the scientific and research community to-date in improving the Mode I and Mode II interlaminar fracture toughness (ILFT) by various methodologies including the effect of multiscale reinforcement. Methods of measuring the Mode I and Mode II fracture toughness of the composites along with the solutions to improve them are presented. The use of different methodologies and approaches along with their performance in enhancing the fracture toughness of the composites is summarized. The current state of polymer-fiber-nanotube composites and their future perspective are also deliberated.

[1]  J. Ferreira,et al.  Mixed Mode interlayer fracture of glass fiber/nano-enhanced epoxy composites , 2014 .

[2]  Adrian P. Mouritz,et al.  Review of applications for advanced three-dimensional fibre textile composites , 1999 .

[3]  Sergii G. Kravchenko,et al.  Thickness dependence of mode I interlaminar fracture toughness in a carbon fiber thermosetting composite , 2017 .

[4]  S. Hallett,et al.  Influence of Z-pin embedded length on the interlaminar traction response of multi-directional composite laminates , 2017 .

[5]  T. Chou,et al.  Carbon nanotube/carbon fiber hybrid multiscale composites , 2002 .

[6]  S. Singh,et al.  Mixed-mode fracture in an interleaved carbon-fibre/epoxy composite , 1995 .

[7]  N. J. Johnston,et al.  Matrix Resin Effects in Composite Delamination: Mode I Fracture Aspects , 1987 .

[8]  Mototsugu Tanaka,et al.  Effect of interface control on mode I interlaminar fracture toughness of woven C/C composite laminates , 2001 .

[9]  D. Dean,et al.  Multiscale fiber reinforced composites based on a carbon nanofiber/epoxy nanophased polymer matrix: Synthesis, mechanical, and thermomechanical behavior , 2009 .

[10]  Xujin Bao,et al.  Mechanical behaviour of advanced composite laminates embedded with carbon nanotubes: review , 2009, International Conference on Smart Materials and Nanotechnology in Engineering.

[11]  K. Pickering,et al.  Mode I and Mode II interlaminar fracture toughness of composite laminates interleaved with electrospun nanofibre veils , 2015 .

[12]  Soo-Jin Park,et al.  Thermal and mechanical properties of tetrafunctional epoxy resin toughened with epoxidized soybean oil , 2004 .

[13]  Interlaminar Fracture of CF/EP Composites Modified with Nano-Silica , 2007 .

[14]  L. Tong,et al.  Effective properties for plain weave composites through-thickness reinforced with carbon nanotube forests , 2008 .

[15]  S. Joshi,et al.  Experimental investigation on suitability of carbon fibre thin plies for racquets , 2016 .

[16]  Kristopher P. Plain,et al.  The effect of stitch incline angle on mode I fracture toughness – Experimental and modelling , 2010 .

[17]  Bodo Fiedler,et al.  Influence of nano-modification on the mechanical and electrical properties of conventional fibre-reinforced composites , 2005 .

[18]  S. Joshi,et al.  Enhanced vibration damping and dynamic mechanical characteristics of composites with novel pseudo-thermoset matrix system , 2017 .

[19]  P. Potluri,et al.  Improvement of Mode I Interlaminar Fracture Toughness of Stitched Glass/Epoxy Composites , 2017, Applied Composite Materials.

[20]  Hsu-Chiang Kuan,et al.  Preparation, morphology and properties of acid and amine modified multiwalled carbon nanotube/polyimide composite , 2007 .

[21]  Hui-Ming Cheng,et al.  Micro-hardness and Flexural Properties of Randomly-oriented Carbon Nanotube Composites , 2003 .

[22]  P. Li,et al.  Synchronous effects of multiscale reinforced and toughened CFRP composites by MWNTs-EP/PSF hybrid nanofibers with preferred orientation , 2015 .

[23]  D. Lagoudas,et al.  Processing and Characterization of Epoxy/SWCNT/Woven Fabric Composites , 2006 .

[24]  G. Tsai,et al.  Effect of stitching on mode i strain energy release rate , 2005 .

[25]  John E. Masters,et al.  Improved Impact and Delamination Resistance through Interleafing , 1991 .

[26]  Chi-Hung Lee,et al.  Miscibility and Properties of Acid-Treated Multi-Walled Carbon Nanotubes/Polyurethane Nanocomposites , 2007 .

[27]  Satoshi Kobayashi,et al.  Experimental characterization of the effects of stacking sequence on the transverse crack behavior in quasi-isotropic interleaved CFRP laminates , 2000 .

[28]  Long-Gui Tang,et al.  A review of methods for improving the interfacial adhesion between carbon fiber and polymer matrix , 1997 .

[29]  M. Bannister,et al.  Challenges for composites into the next millennium : a reinforcement perspective , 2001 .

[30]  Brian L. Wardle,et al.  Fabrication and multifunctional properties of a hybrid laminate with aligned carbon nanotubes grown In Situ , 2008 .

[31]  V. Rangari,et al.  Alignment of carbon nanotubes and reinforcing effects in nylon-6 polymer composite fibers , 2008, Nanotechnology.

[32]  T. Peijs,et al.  Interlaminar toughening of woven fabric carbon/epoxy composite laminates using hybrid aramid/phenoxy interleaves , 2017 .

[33]  J. L. Bitner,et al.  The interlaminar fracture of organic-matrix, woven reinforcement composites , 1980 .

[34]  M. Kotaki,et al.  A review on polymer nanofibers by electrospinning and their applications in nanocomposites , 2003 .

[35]  Chuck Zhang,et al.  Processing, characterization, and modeling of carbon nanotube-reinforced multiscale composites , 2009 .

[36]  D. Dean,et al.  Multiscale fiber-reinforced nanocomposites: Synthesis, processing and properties , 2006 .

[37]  Yuanqiang Song,et al.  Toughening of carbon fibre reinforced polymer composites with rubber nanoparticles for advanced industrial applications , 2016 .

[38]  Q. Fu,et al.  Optimizing matrix and fiber/matrix interface to achieve combination of strength, ductility and toughness in carbon nanotube-reinforced carbon/carbon composites , 2017 .

[39]  O. Ishai,et al.  Interlaminar fracture toughness and toughening of laminated composite materials: a review , 1989 .

[40]  G. Romhány,et al.  Interlaminar crack propagation in MWCNT/fiber reinforced hybrid composites , 2009 .

[41]  T. Peijs,et al.  Improved fracture toughness of carbon fibre/epoxy composite laminates using dissolvable thermoplastic fibres , 2010 .

[42]  Jae Whan Cho,et al.  Effect of carbon nanotubes on mechanical and electrical properties of polyimide/carbon nanotubes nanocomposites , 2007 .

[43]  Saeed Rahmanian,et al.  Mechanical characterization of epoxy composite with multiscale reinforcements: Carbon nanotubes and short carbon fibers , 2014 .

[44]  X. Gong,et al.  Test methods for measuring pure mode III delamination toughness of composite , 2016 .

[45]  A. Mouritz Tensile fatigue properties of 3D composites with through-thickness reinforcement , 2008 .

[46]  S. Tjong,et al.  Interlaminar Fracture Properties of Carbon Fibre/Epoxy Matrix Composites Interleaved with Polyethylene Terephthalate (Pet) Films , 2001 .

[47]  Shaohua Jiang,et al.  Mechanical flexible PI/MWCNTs nanocomposites with high dielectric permittivity by electrospinning , 2014 .

[48]  Ignace Verpoest,et al.  Interlaminar fracture toughness of CFRP influenced by fibre surface treatment: Part 1. Experimental results , 1995 .

[49]  Amar C. Garg,et al.  Delamination—a damage mode in composite structures , 1988 .

[50]  Xiaoping Yang,et al.  Establishment of multi-scale interface in interlayer-toughened CFRP composites by self-assembled PA-MWNTs-EP , 2016 .

[51]  Kristopher P. Plain,et al.  An experimental study on mode I and II fracture toughness of laminates stitched with a one-sided stitching technique , 2011 .

[52]  Derrick Dean,et al.  The effect of interfacial chemistry on molecular mobility and morphology of multiwalled carbon nanotubes epoxy nanocomposite , 2007 .

[53]  Michael D. Silcock,et al.  Rapid Composite Tube Manufacture Utilizing the QuickstepTM Process , 2007 .

[54]  A. Hirsch Functionalization of single-walled carbon nanotubes. , 2002, Angewandte Chemie.

[55]  A. Bogdanovich,et al.  Carbon nanotube shear-pressed sheet interleaves for Mode I interlaminar fracture toughness enhancement , 2016 .

[56]  Hui Qian,et al.  Hierarchical Composites Reinforced with Carbon Nanotube Grafted Fibers: The Potential Assessed at the Single Fiber Level , 2008 .

[57]  Tomohiro Yokozeki,et al.  Mechanical properties of CFRP laminates manufactured from unidirectional prepregs using CSCNT-dispersed epoxy , 2007 .

[58]  A. Ravindran,et al.  Multi-scale toughening of fibre composites using carbon nanofibres and z-pins , 2016 .

[59]  B. Fox,et al.  Manufacturing Influence on the Delamination Fracture Behavior of the T800H/3900-2 Carbon Fiber Reinforced Polymer Composites , 2007 .

[60]  J. W. Deaton,et al.  The interlaminar fracture toughness of woven graphite/epoxy composites , 1989 .

[61]  Yan Li,et al.  Interlaminar toughening in flax fiber-reinforced composites interleaved with carbon nanotube buckypaper , 2014 .

[62]  I. Daniel,et al.  Processing of clay/epoxy nanocomposites by shear mixing , 2003 .

[63]  Masahiro Arai,et al.  Mode I and mode II interlaminar fracture toughness of CFRP laminates toughened by carbon nanofiber interlayer , 2008 .

[64]  M. S. Yong,et al.  The effects of through-the-thickness stitching on the Mode I interlaminar fracture toughness of flax/epoxy composite laminates , 2016 .

[65]  Ling-Ling Liu,et al.  Improving the interlaminar fracture toughness of carbon/epoxy laminates by directly incorporating with porous carbon nanotube buckypaper , 2016 .

[66]  L. K. Seah,et al.  Delamination growth behavior of a woven E-glass/bismaleimide composite in seawater environment , 2016 .

[67]  L. Gorbatikh,et al.  Nano-engineered composites: a multiscale approach for adding toughness to fibre reinforced composites , 2011 .

[68]  L. Ye Characterization of delamination resistance in composite laminates , 1989 .

[69]  Satoshi Kobayashi,et al.  Effect of fine particle incorporation into matrix on mechanical properties of plain woven carbon fiber reinforced plastics fabricated with vacuum assisted resin transfer molding , 2016 .

[70]  Leif A. Carlsson,et al.  The effect of weave pattern and crack propagation direction on mode I delamination resistance of woven glass and carbon composites , 1998 .

[71]  Hsu-Chiang Kuan,et al.  Mechanical, thermal and morphological properties of glass fiber and carbon fiber reinforced polyamide-6 and polyamide-6/clay nanocomposites , 2001 .

[72]  A toughening and strengthening technique of hybrid composites with non-woven tissue , 2008 .

[73]  Y. Mai,et al.  Failure mechanisms in toughened epoxy resins—A review , 1988 .

[74]  Ya‐Ping Sun,et al.  Polymeric Carbon Nanocomposites from Carbon Nanotubes Functionalized with Matrix Polymer , 2003 .

[75]  K. Gruenberg,et al.  Improved fracture toughness of carbon fiber composite functionalized with multi walled carbon nanotubes , 2008 .

[76]  K. Fiedler 3d Fibre Reinforced Polymer Composites , 2016 .

[77]  P. Jar,et al.  Analysis of specimen thickness effect on interlaminar fracture toughness of fibre composites using finite element models , 2003 .

[78]  A. Waas,et al.  Resistance to delamination of 3D woven textile composites evaluated using End Notch Flexure (ENF) tests: Experimental results , 2011 .

[79]  Reza Bagheri,et al.  Rubber-Toughened Epoxies: A Critical Review , 2009 .

[80]  S. Yurgartis,et al.  Modelling weave and stacking configuration effects on interlaminar shear stresses in fabric laminates , 1993 .

[81]  W. Tian,et al.  Toughening of a carbon fibre reinforced epoxy anhydride composite using an epoxy terminated hyperbranched modifier , 2005 .

[82]  O. Okoli,et al.  A review of multiscale composite manufacturing and challenges , 2012 .

[83]  L. K. Jain,et al.  ON THE EFFECT OF STITCHING ON MODE I DELAMINATION TOUGHNESS OF LAMINATED COMPOSITES , 1994 .

[84]  Marino Quaresimin,et al.  Glass-fibre-reinforced composites with enhanced mechanical and electrical properties – Benefits and limitations of a nanoparticle modified matrix , 2006 .

[85]  L. Drzal,et al.  Effect of surface treatment on mode I interlaminar fracture behaviour of plain glass woven fabric composites: Part I. Report of the 2nd round-robin test results , 2000 .

[86]  K. Shin,et al.  Effect of Temperature on Interlaminar Fracture Toughness of Filament-Wound Carbon/Epoxy Composites , 2015 .

[87]  Brian L. Wardle,et al.  Long Carbon Nanotubes Grown on the Surface of Fibers for Hybrid Composites , 2008 .

[88]  Shaohua Jiang,et al.  Short electrospun carbon nanofiber reinforced polyimide composite with high dielectric permittivity , 2015 .

[89]  Jingli Shi,et al.  Fabrication and mechanical/conductive properties of multi-walled carbon nanotube (MWNT) reinforced carbon matrix composites , 2005 .

[90]  P.M.S.T. de Castro,et al.  Mode-I interlaminar fracture of carbon/epoxy cross-ply composites , 2002 .

[91]  H. Noguchi,et al.  Tensile properties and fatigue characteristics of hybrid composites with non-woven carbon tissue , 2002 .

[92]  K. Schulte,et al.  Carbon nanotube-reinforced epoxy-composites: enhanced stiffness and fracture toughness at low nanotube content , 2004 .

[93]  Leslie Banks-Sills,et al.  The effect of adhesive thickness on interlaminar fracture toughness of interleaved cfrp specimens , 1989 .

[94]  S. Agarwal,et al.  Novel layer-by-layer procedure for making nylon-6 nanofiber reinforced high strength, tough, and transparent thermoplastic polyurethane composites. , 2012, ACS applied materials & interfaces.

[95]  A. López-Menéndez,et al.  A new method for testing composite materials under mode III fracture , 2016 .

[96]  L. Gorbatikh,et al.  Carbon Fiber Composites Based on Multi‐Phase Epoxy/PES Matrices with Carbon Nanotubes: Morphology and Interlaminar Fracture Toughness Characterization   , 2016 .

[97]  S. Joshi,et al.  Mechanical and vibration response of insulated hybrid composites , 2018 .

[98]  W. Paepegem,et al.  Using aligned nanofibres for identifying the toughening micromechanisms in nanofibre interleaved laminates , 2016 .

[99]  Vishwesh Dikshit,et al.  Enhancing interlaminar fracture characteristics of woven CFRP prepreg composites through CNT dispersion , 2012 .

[100]  M. Cioffi,et al.  The Role of Stitch Yarn on the Delamination Resistance in Non-crimp Fabric: Chemical and Physical Interpretation , 2017, Journal of materials engineering and performance (Print).

[101]  Chun-Gon Kim,et al.  Enhancement of the crack growth resistance of a carbon/epoxy composite by adding multi-walled carbon nanotubes at a cryogenic temperature , 2008 .

[102]  D. Ratna Modification of epoxy resins for improvement of adhesion: a critical review , 2003 .

[103]  A. Zucchelli,et al.  The effect of PVDF nanofibers on mode-I fracture toughness of composite materials , 2015 .

[104]  J. Hinkley Interface Effects in Interlaminar Fracture of Thermoplastic Composites , 1990 .

[105]  Peter Davies,et al.  Standard Test Methods for Delamination Resistance of Composite Materials: Current Status , 1998 .

[106]  Ajit K. Roy,et al.  Engineered interfaces in fiber reinforced composites , 1999 .

[107]  A. Loos,et al.  Mode I and Mode II fracture toughness of high-performance 3000 g mole-1 reactive poly(etherimide)/carbon fiber composites , 1999 .

[108]  N. J. Pagano,et al.  2.13 – Delamination of Polymer Matrix Composites: Problems and Assessment , 2000 .

[109]  D. E. Hill,et al.  Polyimide-functionalized carbon nanotubes: Synthesis and dispersion in nanocomposite films , 2004 .

[110]  M. Pol,et al.  Experimental investigation on the effects of carbon nanotubes on mode I interlaminar fracture toughness of laminated composites , 2018 .

[111]  Lin Li,et al.  Improvement of mechanical and thermal properties of carbon nanotube composites through nanotube functionalization and processing methods , 2009 .

[112]  Y. Mai,et al.  Improving interlaminar fracture toughness of carbon fibre/epoxy laminates by incorporation of nano-particles , 2012 .

[113]  S. Agarwal,et al.  Short electrospun polymeric nanofibers reinforced polyimide nanocomposites , 2013 .

[114]  K. Friedrich,et al.  Thermoplastic impregnated fiber bundles: manufacturing of laminates and fracture mechanics characterization , 1988 .

[115]  W. Paepegem,et al.  Interlaminar toughening of resin transfer moulded glass fibre epoxy laminates by polycaprolactone electrospun nanofibres , 2014 .

[116]  Ignace Verpoest,et al.  Influence of carbon nanotube reinforcement on the processing and the mechanical behaviour of carbon fiber/epoxy composites , 2009 .

[117]  U. Yilmazer,et al.  Impact modified epoxy/montmorillonite nanocomposites: synthesis and characterization , 2003 .

[118]  Sung Chul Kim,et al.  Interlaminar Fracture Toughness of Carbon Fiber/Epoxy Composites using Short Kevlar Fiber and/or Nylon‐6 Powder Reinforcement , 1997 .

[119]  T. Uchida,et al.  A comparison of reinforcement efficiency of various types of carbon nanotubes in polyacrylonitrile fiber , 2005 .

[120]  S. Nutt,et al.  Basalt fiber–epoxy laminates with functionalized multi-walled carbon nanotubes , 2009 .

[121]  B. Davidson,et al.  A Modified Edge Crack Torsion Test for Measurement of Mode III Fracture Toughness of Laminated Tape Composites , 2016 .

[122]  A. López-Menéndez,et al.  Analysis of mode III interlaminar fracture toughness of laminated composites using a novel testing device , 2017 .

[123]  A. Mouritz,et al.  Fatigue behaviour of stitched GRP laminates , 1996 .

[124]  I. Herszberg,et al.  Mode I interlaminar fracture toughness properties of advanced textile fibreglass composites , 1999 .

[125]  K. Shivakumar,et al.  Interleaved Polymer Matrix Composites - A Review , 2013 .

[126]  S. Joshi,et al.  Optimizing Polymer Infusion Process for Thin Ply Textile Composites with Novel Matrix System , 2017, Materials.

[127]  Bronwyn Fox,et al.  Characterization and Analysis of Delamination Fracture and Nanocreep Properties in Carbon Epoxy Composites Manufactured by Different Processes , 2006 .

[128]  Tong Earn Tay,et al.  Characterization and analysis of delamination fracture in composites: An overview of developments from 1990 to 2001 , 2003 .

[129]  L. Qu,et al.  Carbon microfibers sheathed with aligned carbon nanotubes: towards multidimensional, multicomponent, and multifunctional nanomaterials. , 2006, Small.

[130]  Jianyao Yao,et al.  Mode-II interlaminar fracture toughness of GFRP/Al laminates improved by surface modified VGCF interleaves , 2017 .

[131]  H. Kausch,et al.  Parameters determining the strength and toughness of particulate filled epoxide resins , 1987 .

[132]  D. Colbert,et al.  Dissolution of Full-Length Single-Walled Carbon Nanotubes , 2001 .

[133]  J. Tour,et al.  Interface toughness of carbon nanotube reinforced epoxy composites. , 2011, ACS applied materials & interfaces.

[134]  Shaw-Ming Lee An Edge Crack Torsion Method for Mode III Delamination Fracture Testing , 1993 .

[135]  H. Choi,et al.  Enhancement of Interlaminar Fracture Toughness of Carbon Fiber/Epoxy Composites Using Silk Fibroin Electrospun Nanofibers , 2016 .

[136]  Y. Mai,et al.  On fracture toughness of nano-particle modified epoxy , 2011 .

[137]  C. K. H. Dharan,et al.  Delamination Fracture Toughness of Graphite and Aramid Epoxy Composites , 1986 .

[138]  L. Khan Quickstep Processing of Polymeric Composites: An Out-Of-Autoclave (OOA) Approach , 2017 .

[139]  Jayashree Bijwe,et al.  Surface Treatment of Carbon Fibers - A Review , 2014 .

[140]  B. Wardle,et al.  Multi-scale interlaminar fracture mechanisms in woven composite laminates reinforced with aligned carbon nanotubes , 2014 .

[141]  R C Haddon,et al.  Multiscale carbon nanotube-carbon fiber reinforcement for advanced epoxy composites. , 2007, Langmuir : the ACS journal of surfaces and colloids.

[142]  Y. Mai,et al.  Improvement of interlaminar fracture toughness in carbon fiber/epoxy composites with carbon nanotubes/polysulfone interleaves , 2017 .

[143]  T. Gries,et al.  Effect of nanomaterial on mode I and mode II interlaminar fracture toughness of woven carbon fabric reinforced polymer composites , 2017 .

[144]  V. Rangari,et al.  Fabrication and mechanical characterization of carbon/SiC-epoxy nanocomposites , 2005 .

[145]  Michael Griebel,et al.  Reinforcement Mechanisms in Polymer Nanotube Composites: Simulated Non-Bonded and Cross-Linked Systems , 2000 .

[146]  C. Papaspyrides,et al.  The effect on the mechanical properties of carbon/epoxy composites of polyamide coatings on the fibers , 1999 .

[147]  L. Guadagno,et al.  Fatigue delamination of a carbon fabric/epoxy laminate with carbon nanotubes , 2016 .

[148]  Masaki Hojo,et al.  Modes I and II interlaminar fracture toughness and fatigue delamination of CF/epoxy laminates with self-same epoxy interleaf , 2006 .

[149]  Y. Mai,et al.  Numerical and experimental studies on the fracture behavior of rubber-toughened epoxy in bulk specimen and laminated composites , 2002 .

[150]  S. Agarwal,et al.  Short nylon-6 nanofiber reinforced transparent and high modulus thermoplastic polymeric composites , 2013 .

[151]  Jang‐Kyo Kim,et al.  Dispersion, interfacial interaction and re-agglomeration of functionalized carbon nanotubes in epoxy composites , 2010 .

[152]  W. Van Paepegem,et al.  Damage-Resistant Composites Using Electrospun Nanofibers: A Multiscale Analysis of the Toughening Mechanisms. , 2016, ACS applied materials & interfaces.

[153]  M. Itkis,et al.  Dissolution of Single‐Walled Carbon Nanotubes , 1999 .

[154]  V. Michaud,et al.  Interlaminar fracture toughness improvement in composites with hyperbranched polymer modified resin , 2005 .

[155]  Ki-Young Kim,et al.  Interlaminar fracture toughness of CF/PEI composites at elevated temperatures: roles of matrix toughness and fibre/matrix adhesion , 2004 .

[156]  P. González-García,et al.  Enhanced interlaminar fracture toughness of unidirectional carbon fiber/epoxy composites modified with sprayed multi-walled carbon nanotubes , 2017 .

[157]  M. Khoshravan,et al.  Investigation on mode III interlaminar fracture of glass/epoxy laminates using a modified split cantilever beam test , 2014 .

[158]  F. Jones,et al.  A Review of Interphase Formation and Design in Fibre-Reinforced Composites , 2010 .

[159]  W. Paepegem,et al.  Study of the Mode I and Mode II interlaminar behaviour of a carbon fabric reinforced thermoplastic , 2012 .

[160]  Eklund,et al.  Solution properties of single-walled carbon nanotubes , 1998, Science.

[161]  Peter Davies,et al.  A status report on delamination resistance testing of polymer-matrix composites , 2008 .

[162]  R. Day,et al.  Cure characterization of Cycom 977-2A carbon/epoxy composites for quickstep processing , 2014 .

[163]  Ryutaro Fukushima CARBON FIBERS , 2002 .

[164]  Jang‐Kyo Kim,et al.  Improved interlaminar shear properties of multiscale carbon fiber composites with bucky paper interleaves made from carbon nanofibers , 2012 .

[165]  J. Wilkerson,et al.  Improvements in mechanical properties of a carbon fiber epoxy composite using nanotube science and technology , 2010 .

[166]  T. Chou,et al.  Advances in the science and technology of carbon nanotubes and their composites: a review , 2001 .

[167]  K. Friedrich,et al.  On the improvement of toughness of CFRPs with resin doped with CNF and PZT particles , 2007 .

[168]  R. Velmurugan,et al.  Improvements in Mode I interlaminar fracture toughness and in-plane mechanical properties of stitched glass/polyester composites , 2007 .

[169]  Chuck Zhang,et al.  Investigation of the dispersion process of SWNTs/SC-15 epoxy resin nanocomposites , 2004 .

[170]  N. Sahoo,et al.  Effect of Functionalized Carbon Nanotubes on Molecular Interaction and Properties of Polyurethane Composites , 2006 .

[171]  Sunil C. Joshi,et al.  Microwave–thermal technique for energy and time efficient curing of carbon fiber reinforced polymer prepreg composites , 2014 .

[172]  M. Tanoğlu,et al.  Enhancement of interlaminar fracture toughness of carbon fiber–epoxy composites using polyamide‐6,6 electrospun nanofibers , 2017 .

[173]  H. Kim,et al.  Effect of the cooling rate on the mechanical properties of glass fiber reinforced thermoplastic composites , 2017 .

[174]  Israel Herszberg,et al.  Effect of weaving damage on the tensile properties of three-dimensional woven composites , 2002 .

[175]  Shaw-Ming Lee Mode II Interlaminar Crack Growth Process in Polymer Matrix Composites , 1999, Proceedings of the Eighth Japan-U.S. Conference on Composite Materials.

[176]  J. Fraser Stoddart,et al.  Preparation and Properties of Polymer-Wrapped Single-Walled Carbon Nanotubes , 2001 .

[177]  Lw Gause,et al.  Structural Properties of Braided Graphite/Epoxy Composites , 1987 .

[178]  Wenfeng Hao,et al.  Investigation of dynamic mode I matrix crack-fiber bundle interaction in composites using caustics , 2016 .

[179]  S. Agarwal,et al.  Tough and transparent nylon-6 electrospun nanofiber reinforced melamine-formaldehyde composites. , 2012, ACS applied materials & interfaces.

[180]  M. Kotaki,et al.  Effect of interfacial properties and weave structure on mode I interlaminar fracture behaviour of glass satin woven fabric composites , 1997 .

[181]  Y. Mai,et al.  Effect of stitching on interlaminar delamination extension in composite laminates , 1993 .

[182]  S. Jeelani,et al.  Experimental study on the mechanical behavior of carbon/epoxy composites with a carbon nanofiber-modified matrix , 2014 .

[183]  M. Arai,et al.  Fracture toughness improvement of CFRP laminates by dispersion of cup-stacked carbon nanotubes , 2009 .

[184]  Bhanu Pratap Singh,et al.  Growth of carbon nanotubes on carbon fibre substrates to produce hybrid/phenolic composites with improved mechanical properties , 2008 .

[185]  Rh Martin Delamination Characterization of Woven Glass/Polyester Composites , 1997 .

[186]  Y. Mai,et al.  On the effects of stitching in CFRPs—II. Mode II delamination toughness , 1998 .

[187]  R. Velmurugan,et al.  Influence of in-plane fibre orientation on mode I interlaminar fracture toughness of stitched glass/polyester composites , 2008 .