Synergy in efficacy of fungal entomopathogens and permethrin against West African insecticide-resistant Anopheles gambiae mosquitoes

Background Increasing incidences of insecticide resistance in malaria vectors are threatening the sustainable use of contemporary chemical vector control measures. Fungal entomopathogens provide a possible additional tool for the control of insecticide-resistant malaria mosquitoes. This study investigated the compatibility of the pyrethroid insecticide permethrin and two mosquito-pathogenic fungi, Beauveria bassiana and Metarhizium anisopliae, against a laboratory colony and field population of West African insecticide-resistant Anopheles gambiae s.s. mosquitoes. Methodology/Findings A range of fungus-insecticide combinations was used to test effects of timing and sequence of exposure. Both the laboratory-reared and field-collected mosquitoes were highly resistant to permethrin but susceptible to B. bassiana and M. anisopliae infection, inducing 100% mortality within nine days. Combinations of insecticide and fungus showed synergistic effects on mosquito survival. Fungal infection increased permethrin-induced mortality rates in wild An. gambiae s.s. mosquitoes and reciprocally, exposure to permethrin increased subsequent fungal-induced mortality rates in both colonies. Simultaneous co-exposure induced the highest mortality; up to 70.3±2% for a combined Beauveria and permethrin exposure within a time range of one gonotrophic cycle (4 days). Conclusions/Significance Combining fungi and permethrin induced a higher impact on mosquito survival than the use of these control agents alone. The observed synergism in efficacy shows the potential for integrated fungus-insecticide control measures to dramatically reduce malaria transmission and enable control at more moderate levels of coverage even in areas where insecticide resistance has rendered pyrethroids essentially ineffective.

[1]  Anuar Morales-Rodriguez,et al.  Synergies between biological and neonicotinoid insecticides for the curative control of the white grubs Amphimallon majale and Popillia japonica. , 2009 .

[2]  S. Kamble,et al.  In Vivo Study on Combined Toxicity of Metarhizium anisopliae (Deuteromycotina: Hyphomycetes) Strain ESC-1 with Sublethal Doses of Chlorpyrifos, Propetamphos, and Cyfluthrin Against German Cockroach (Dictyoptera: Blattellidae) , 2000, Journal of economic entomology.

[3]  B. Knols,et al.  A novel method for standardized application of fungal spore coatings for mosquito exposure bioassays , 2010 .

[4]  A. Koppenhöfer,et al.  Synergism of imidacloprid and an entomopathogenic nematode: a novel approach to white grub (Coleoptera: Scarabaeidae) control in turfgrass , 1998 .

[5]  B. Knols,et al.  The infectivity of the entomopathogenic fungus Beauveria bassiana to insecticide-resistant and susceptible Anopheles arabiensis mosquitoes at two different temperatures , 2010, Malaria Journal.

[6]  H. Ranson,et al.  Insecticide resistance in Anopheles gambiae: data from the first year of a multi-country study highlight the extent of the problem , 2009, Malaria Journal.

[7]  Edith P. Madumla,et al.  An extra-domiciliary method of delivering entomopathogenic fungus, Metharizium anisopliae IP 46 for controlling adult populations of the malaria vector, Anopheles arabiensis , 2010, Parasites & Vectors.

[8]  C M Lacey,et al.  Route of invasion and histopathology of Metarhizium anisopliae in Culex quinquefasciatus. , 1988, Journal of invertebrate pathology.

[9]  E. Scholte,et al.  Infection of malaria (Anopheles gambiae s.s.) and filariasis (Culex quinquefasciatus) vectors with the entomopathogenic fungus Metarhizium anisopliae , 2003, Malaria Journal.

[10]  O. Faye,et al.  Status of pyrethroid resistance in Anopheles gambiae sensu lato. , 1999, Bulletin of the World Health Organization.

[11]  J. Darbro,et al.  Spore persistence and likelihood of aeroallergenicity of entomopathogenic fungi used for mosquito control. , 2009, The American journal of tropical medicine and hygiene.

[12]  A. Yadouleton,et al.  Insecticide resistance status in Anopheles gambiae in southern Benin , 2010, Malaria Journal.

[13]  J. Hemingway,et al.  Lessons from the past: managing insecticide resistance in malaria control and eradication programmes. , 2008, The Lancet. Infectious diseases.

[14]  W. Takken,et al.  Infection of the malaria mosquito, Anopheles gambiae, with two species of entomopathogenic fungi: effects of concentration, co-formulation, exposure time and persistence , 2009, Malaria Journal.

[15]  D.,et al.  Regression Models and Life-Tables , 2022 .

[16]  R. Goodchild,et al.  Knockdown by pyrethroids: Its role in the intoxication process† , 1974 .

[17]  J. Hemingway,et al.  Identification of a point mutation in the voltage‐gated sodium channel gene of Kenyan Anopheles gambiae associated with resistance to DDT and pyrethroids , 2000, Insect molecular biology.

[18]  Janet Hemingway,et al.  The Innovative Vector Control Consortium: improved control of mosquito-borne diseases. , 2006, Trends in parasitology.

[19]  W. Takken,et al.  Open Access RESEARCH , 2010 .

[20]  A. Devonshire,et al.  Molecular characterization of pyrethroid knockdown resistance (kdr) in the major malaria vector Anopheles gambiae s.s. , 1998, Insect molecular biology.

[21]  B. Knols,et al.  Entomopathogenic fungi as the next-generation control agents against malaria mosquitoes. , 2010, Future microbiology.

[22]  Penelope A. Hancock,et al.  Combining Fungal Biopesticides and Insecticide-Treated Bednets to Enhance Malaria Control , 2009, PLoS Comput. Biol..

[23]  David Weetman,et al.  Does kdr genotype predict insecticide-resistance phenotype in mosquitoes? , 2009, Trends in parasitology.

[24]  S. Sanyang,et al.  Laboratory shelf-life of oil-formulated conidia of the locust and grasshopper fungal pathogen Metarhizium flavoviridae Gams & Rozsypal, in mixtures with the pyrethroid insecticide lambda-cyhalothrin , 2000 .

[25]  E. Scholte,et al.  Infection of adult Aedes aegypti and Ae. albopictus mosquitoes with the entomopathogenic fungus Metarhizium anisopliae. , 2007, Acta tropica.

[26]  P. Neves,et al.  Compatibility of entomopathogenic fungi with neonicotinoid insecticides , 2001 .

[27]  É. Fernandes,et al.  Compatibility of the fungus Metarhizium anisopliae and deltamethrin to control a resistant strain of Boophilus microplus tick. , 2006, Veterinary parasitology.

[28]  J. Koella,et al.  Towards evolution-proof malaria control with insecticides , 2009, Evolutionary applications.

[29]  W. Hawley,et al.  Elevated oxidase and esterase levels associated with permethrin tolerance in Anopheles gambiae from Kenyan villages using permethrin‐impregnated nets , 1999, Medical and veterinary entomology.

[30]  R. S. St. Leger,et al.  Metarhizium spp., cosmopolitan insect-pathogenic fungi: mycological aspects. , 2004, Advances in applied microbiology.

[31]  D. Sim,et al.  Fungal Pathogen Reduces Potential for Malaria Transmission , 2005, Science.

[32]  First report of Metarhizium anisopliae IP 46 pathogenicity in adult Anopheles gambiae s.s. and An. arabiensis (Diptera; Culicidae) , 2009, Parasites & Vectors.

[33]  C. Borgemeister,et al.  Effect of combined applications of Metarhizium anisopliae (Metsch.) Sorokin (Deuteromycotina: Hyphomycetes) strain CIAT 224 and different dosages of imidacloprid on the subterranean burrower bug Cyrtomenus bergi Froeschner (Hemiptera: Cydnidae) , 2005 .

[34]  M. Rowland,et al.  Multiple insecticide resistance mechanisms in Anopheles gambiae and Culex quinquefasciatus from Benin, West Africa. , 2007, Acta tropica.

[35]  Ralf Nauen,et al.  Insecticide resistance in disease vectors of public health importance. , 2007, Pest management science.

[36]  C. Mccoy,et al.  Synergistic Effect of Imidacloprid and Two Entomopathogenic Fungi on the Behavior and Survival of Larvae of Diaprepes abbreviatus (Coleoptera: Curculionidae) in Soil , 1998 .

[37]  E. Scholte,et al.  African water storage pots for the delivery of the entomopathogenic fungus Metarhizium anisopliae to the malaria vectors Anopheles gambiae s.s. and Anopheles funestus. , 2008, The American journal of tropical medicine and hygiene.

[38]  A. Read,et al.  How to Make Evolution-Proof Insecticides for Malaria Control , 2009, PLoS biology.

[39]  B. Knols,et al.  Fungal infection counters insecticide resistance in African malaria mosquitoes , 2009, Proceedings of the National Academy of Sciences.

[40]  A. Read,et al.  Real-time quantitative PCR for analysis of candidate fungal biopesticides against malaria: Technique validation and first applications , 2009, Journal of invertebrate pathology.

[41]  R. Hunt,et al.  Laboratory selection for and characteristics of pyrethroid resistance in the malaria vector Anopheles funestus , 2005, Medical and veterinary entomology.

[42]  E. Scholte,et al.  An Entomopathogenic Fungus for Control of Adult African Malaria Mosquitoes , 2005, Science.

[43]  D. Sim,et al.  Transmission Fungal Pathogen Reduces Potential for Malaria , 2009 .

[44]  G. Zimmermann Review on safety of the entomopathogenic fungi Beauveria bassiana and Beauveria brongniartii , 2007 .

[45]  G. Zimmermann Review on safety of the entomopathogenic fungus Metarhizium anisopliae , 2007 .

[46]  A. Read,et al.  Can fungal biopesticides control malaria? , 2007, Nature Reviews Microbiology.

[47]  J. Nishigaki,et al.  Factor analysis of synergistic effect between the entomopathogenic fungus Metarhizium anisopliae and synthetic insecticides , 2001 .

[48]  E. Scholte,et al.  Infection of the malaria mosquito Anopheles gambiae with the entomopathogenic fungus Metarhizium anisopliae reduces blood feeding and fecundity. , 2006, Journal of invertebrate pathology.

[49]  Vincent Corbel,et al.  Reduced Efficacy of Insecticide-treated Nets and Indoor Residual Spraying for Malaria Control in Pyrethroid Resistance Area, Benin , 2007, Emerging infectious diseases.

[50]  A. Read,et al.  Thermal behaviour of Anopheles stephensi in response to infection with malaria and fungal entomopathogens , 2009, Malaria Journal.