Dirac Operator and Spectral Geometry

This paper is devoted to mathematical and physical properties of the Dirac operator and spectral geometry. Spin-structures in Lorentzian and Riemannian manifolds, and the global theory of the Dirac operator, are first analyzed. Elliptic boundary-value problems, index problems for closed manifolds and for manifolds with boundary, Bott periodicity and K-theory are then presented. This makes it clear why the Dirac operator is the most fundamental, in the theory of elliptic operators on manifolds. The topic of spectral geometry is developed by studying non-local boundary conditions of the Atiyah-Patodi-Singer type, and heat-kernel asymptotics for operators of Laplace type on manifolds with boundary. The emphasis is put on the functorial method, which studies the behaviour of differential operators, boundary operators and heat-kernel coefficients under conformal rescalings of the background metric. In the second part, a number of relevant physical applications are studied: non-local boundary conditions for massless spin-1/2 fields, massless spin-3/2 potentials on manifolds with boundary, geometric theory of massive spin-3/2 potentials, local boundary conditions in quantum supergravity, quark boundary conditions, one-loop quantum cosmology, conformally covariant operators and Euclidean quantum gravity.

[1]  F. W. J. Olver,et al.  The asymptotic expansion of bessel functions of large order , 1954, Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences.

[2]  P. Dirac Principles of Quantum Mechanics , 1982 .

[3]  G. Kennedy Boundary terms in the Schwinger-DeWitt expansion: flat space results , 1978 .

[4]  J. York Boundary terms in the action principles of general relativity , 1986 .

[5]  Kamenshchik,et al.  Fermions in one-loop quantum cosmology. , 1993, Physical review. D, Particles and fields.

[6]  A. Ashtekar Lectures on Non-Perturbative Canonical Gravity , 1991 .

[7]  Gauge-averaging functionals for Euclidean Maxwell theory in the presence of boundaries , 1994, gr-qc/9506053.

[8]  R. T. Waechter On hearing the shape of a drum: an extension to higher dimensions , 1972, Mathematical Proceedings of the Cambridge Philosophical Society.

[9]  Residues of the eta function for an operator of Dirac type with local boundary conditions , 1992 .

[10]  R. S. Ward,et al.  Twistor Geometry and Field Theory: Frontmatter , 1990 .

[11]  S. Hawking The Boundary Conditions of the Universe , 1981 .

[12]  H.Falomir,et al.  Determinants of Dirac operators with local boundary conditions , 1996, hep-th/9608101.

[13]  Timothy H. Boyer,et al.  QUANTUM ELECTROMAGNETIC ZERO-POINT ENERGY OF A CONDUCTING SPHERICAL SHELL AND THE CASIMIR MODEL FOR A CHARGED PARTICLE. , 1968 .

[14]  D. Bleecker,et al.  Topology and Analysis: The Atiyah-Singer Index Formula and Gauge-Theoretic Physics , 1989 .

[15]  M. J. Sparnaay Measurements of attractive forces between flat plates , 1958 .

[16]  J. S. Dowker,et al.  Conformal transformations and the effective action in the presence of boundaries , 1990 .

[17]  M. Atiyah Eigenvalues of the dirac operator , 1985 .

[18]  K. Rothe,et al.  Zero-energy eigenstates for the Dirac boundary problem , 1980 .

[19]  P. D'Eath Canonical quantization of supergravity , 1984 .

[20]  Spectral asymmetry and Riemannian geometry I , 1975 .

[21]  S. Hawking EUCLIDEAN QUANTUM GRAVITY , 1993 .

[22]  Quantized Maxwell theory in a conformally invariant gauge , 1996, hep-th/9610017.

[23]  J. C. Jaeger,et al.  Conduction of Heat in Solids , 1952 .

[24]  A. Polychronakos Boundary conditions, vacuum quantum numbers and the index theorem , 1987 .

[25]  R. Penrose,et al.  Spinors and Space–Time: Subject and author index , 1984 .

[26]  Esposito,et al.  Gravitons in one-loop quantum cosmology: Correspondence between covariant and noncovariant formalisms. , 1994, Physical review. D, Particles and fields.

[27]  L. Fatibene,et al.  Spin structures on manifolds , 1998 .

[28]  S. Hawking The path-integral approach to quantum gravity , 1993 .

[29]  Hawking Virtual black holes. , 1995, Physical review. D, Particles and fields.

[30]  M. Atiyah,et al.  Dirac operators coupled to vector potentials. , 1984, Proceedings of the National Academy of Sciences of the United States of America.

[31]  Local boundary conditions for the Dirac operator and one-loop quantum cosmology. , 1991, Physical review. D, Particles and fields.

[32]  Bryce S. DeWitt,et al.  Dynamical theory of groups and fields , 1964 .

[33]  C. Isham Spinor fields in four dimensional space-time , 1978, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.

[34]  S. Lamoreaux DEMONSTRATION OF THE CASIMIR FORCE IN THE 0.6 TO 6 MU M RANGE , 1997 .

[35]  E. Witten,et al.  Eigenvalue inequalities for fermions in gauge theories , 1984 .

[36]  Michèle Vergne,et al.  Heat Kernels and Dirac Operators: Grundlehren 298 , 1992 .

[37]  B. Booss-Bavnbek,et al.  Elliptic Boundary Problems for Dirac Operators , 1993 .

[38]  J. Stewart,et al.  Advanced General Relativity , 1991 .

[39]  A. Kamenshchik,et al.  ζ-FUNCTION TECHNIQUE FOR QUANTUM COSMOLOGY: THE CONTRIBUTIONS OF MATTER FIELDS TO THE HARTLE-HAWKING WAVE FUNCTION OF THE UNIVERSE , 1992 .

[40]  E. Wigner,et al.  Book Reviews: Group Theory. And Its Application to the Quantum Mechanics of Atomic Spectra , 1959 .

[41]  R. Rennie Geometry and topology of chiral anomalies in gauge theories , 1990 .

[42]  P. Greiner An asymptotic expansion for the heat equation , 1971 .

[43]  P. Piazza K-theory and index theory on manifolds with boundary , 1991 .

[44]  S. Donaldson Geometry of four-manifolds , 1990 .

[45]  Julian Schwinger,et al.  On gauge invariance and vacuum polarization , 1951 .

[46]  R. Bott The Stable Homotopy of the Classical Groups , 1959 .

[47]  Paolo Piazza On the Index of Elliptic Operators on Manifolds with Boundary , 1993 .

[48]  Thomas H. Parker,et al.  Invariants of conformal Laplacians , 1987 .

[49]  M. Atiyah Anomalies and index theory , 1984 .

[50]  J. Weidmann Linear Operators in Hilbert Spaces , 1980 .

[51]  P. Moniz Supersymmetric Quantum Cosmology ∗ — Shaken not stirred , 1996 .

[52]  M. Eastwood,et al.  A conformally invariant Maxwell gauge , 1985 .

[53]  S. Chern On the Curvatura Integra in a Riemannian Manifold , 1945 .

[54]  L. Alvarez-Gaumé Supersymmetry and the Atiyah-Singer index theorem , 1983 .

[55]  P. Bérard Spectral Geometry: Direct and Inverse Problems , 1986 .

[56]  A. Ashtekar New perspectives in canonical gravity , 1988 .

[57]  G. Jona-Lasinio Relativistic field theories with symmetry-breaking solutions , 1964 .

[58]  D. Vassilevich Vector fields on a disk with mixed boundary conditions , 1994, gr-qc/9404052.

[59]  D. Fursaev Spectral Geometry and One-loop Divergences on Manifolds with Conical Singularities , 1994, hep-th/9405143.

[60]  M. Atiyah,et al.  The Index of Elliptic Operators: IV , 1971 .

[61]  J. Rice,et al.  Conformally invariant differential operators on Minkowski space and their curved analogues , 1987 .

[62]  M. Atiyah,et al.  The Index of Elliptic Operators: II , 1968 .

[63]  Michael Atiyah,et al.  The Index Problem for Manifolds with Boundary , 1994 .

[64]  Singularities of Green functions of the products of the Laplace type operators , 1997, hep-th/9703005.

[65]  P. Nieuwenhuizen,et al.  One-loop divergences in the quantum theory of supergravity☆ , 1976 .

[66]  One-loop divergences in simple supergravity: Boundary effects. , 1996, Physical review. D, Particles and fields.

[67]  D. Freedman,et al.  Stability in Gauged Extended Supergravity , 1982 .

[68]  Edward Witten,et al.  Constraints on Supersymmetry Breaking , 1982 .

[69]  Compact Manifolds THE INDEX OF ELLIPTIC OPERATORS ON , 1963 .

[70]  H. Osborn,et al.  A DeWitt expansion of the heat kernel for manifolds with a boundary , 1991 .

[71]  L. Alvarez-Gaumé A Note on the Atiyah-singer Index Theorem , 1983 .

[72]  S. Hawking The Quantum State of the Universe , 1984 .

[73]  P. Townsend,et al.  Cosmological Constant in Supergravity , 1977 .

[74]  V. Mostepanenko,et al.  Vacuum quantum effects in strong fields , 1994 .

[75]  K. Stewartson,et al.  On hearing the shape of a drum: further results , 1971, Mathematical Proceedings of the Cambridge Philosophical Society.

[76]  W. Greub,et al.  Connections, curvature and cohomology , 1976 .

[77]  S. Minakshisundaram,et al.  Some Properties of the Eigenfunctions of The Laplace-Operator on Riemannian Manifolds , 1949, Canadian Journal of Mathematics.

[78]  Leading terms in the heat invariants , 1990 .

[79]  H. Luckock Mixed boundary conditions in quantum field theory , 1991 .

[80]  M. Kac Can One Hear the Shape of a Drum , 1966 .

[81]  Michael Atiyah,et al.  On the periodicity theorem for complex vector bundles , 1964 .

[82]  R. P. Soni,et al.  Formulas and Theorems for the Special Functions of Mathematical Physics , 1967 .

[83]  James B. Hartle,et al.  Wave Function of the Universe , 1983 .

[84]  I. Avramidi Background field calculations in quantum field theory (vacuum polarization) , 1989 .

[85]  Karen K. Uhlenbeck,et al.  Geometry and Quantum Field Theory , 1995 .

[86]  V. Weisskopf,et al.  A New Extended Model of Hadrons , 1974 .

[87]  I. Avramidi The nonlocal structure of the one-loop effective action via partial summation of the asymptotic expansion , 1990 .

[88]  A. Barvinsky The wave function and the effective action in quantum cosmology: Covariant loop expansion , 1987 .

[89]  Peter B. Gilkey,et al.  Heat Content Asymptotics of a Riemannian Manifold with Boundary , 1994 .

[90]  P. Aichelburg,et al.  Necessary and sufficient conditions for trivial solutions in supergravity , 1981 .

[91]  Michael Atiyah,et al.  The index of elliptic operators on compact manifolds , 1963 .

[92]  Euclidean Maxwell theory in the presence of boundaries. II , 1994, gr-qc/9506061.

[93]  A. Kamenshchik,et al.  Euclidean Quantum Gravity on Manifolds with Boundary , 1997 .

[94]  A. Connes Non-commutative geometry and physics , 1995 .

[95]  M. Atiyah THE INDEX OF ELLIPTIC OPERATORS , 1997 .

[96]  T. Branson Sharp inequalities, the functional determinant, and the complementary series , 1995 .

[97]  L. Hörmander Linear Partial Differential Operators , 1963 .

[98]  H. Weyl The Classical Groups , 1940 .

[99]  Stephen W. Hawking Zeta function regularization of path integrals in curved spacetime , 1977 .

[100]  On the eigenfunctions of the Dirac operator on spheres and real hyperbolic spaces , 1995, gr-qc/9505009.

[101]  P. Dirac The quantum theory of the electron , 1928 .

[102]  Peter B. Gilkey,et al.  The asymptotics of the Laplacian on a manifold with boundary , 1990 .

[103]  V. K. Patodi,et al.  On the heat equation and the index theorem , 1973 .

[104]  A. Barvinsky,et al.  One-loop quantum cosmology: ζ-Function technique for the Hartle-Hawking wave function of the universe , 1992 .

[105]  Ivan G. Avramidi,et al.  New invariants in the 1-loop divergences on manifolds with boundary , 1998 .

[106]  G. Esposito Complex general relativity , 1995 .

[107]  P. D'Eath Supersymmetric Quantum Cosmology , 1996 .

[108]  M. Atiyah,et al.  The Index of elliptic operators. 5. , 1971 .

[109]  Esposito,et al.  One-loop amplitudes in Euclidean quantum gravity. , 1995, Physical Review D, Particles and fields.

[110]  Twistors in conformally flat Einstein four manifolds , 1995, gr-qc/9507015.

[111]  D'Eath,et al.  Fermions in quantum cosmology. , 1987, Physical review. D, Particles and fields.

[112]  P. Chernoff Schrödinger and Dirac operators with singular potentials and hyperbolic equations. , 1977 .

[113]  H. Osborn,et al.  Asymptotic expansion of the heat kernel for generalized boundary conditions , 1991 .

[114]  J. S. Dowker,et al.  Spectral invariants for the Dirac equation on the d ball with various boundary conditions , 1996 .

[115]  S. Chern Complex manifolds without potential theory , 1979 .

[116]  S. Hawking The boundary conditions for gauged supergravity , 1983 .

[117]  P. Gilkey The spectral geometry of a Riemannian manifold , 1975 .

[118]  M. Atiyah,et al.  The Index of elliptic operators. 3. , 1968 .