Horizon surface gravity in corotating black hole binaries

For binary systems of corotating black holes, the zeroth law of mechanics states that the surface gravity is constant over each component of the horizon. Using the approximation of a conformally flat spatial metric, we compute sequences of quasi-equilibrium initial data for corotating black hole binaries with irreducible mass ratios in the range 10:1-1:1. For orbits beyond the innermost stable one, the surface gravity is found to be constant on each component of the apparent horizon at the sub-percent level. We compare those numerical results to the analytical predictions from post-Newtonian theory at the fourth (4PN) order and from black hole perturbation theory to linear order in the mass ratio. We find a remarkably good agreement for all mass ratios considered, even in the strong-field regime. In particular, our findings confirm that the domain of validity of black hole perturbative calculations appears to extend well beyond the extreme mass-ratio limit.

[1]  B. Whiting,et al.  Finding high-order analytic post-Newtonian parameters from a high-precision numerical self-force calculation , 2013, 1312.1952.

[2]  A. L. Tiec Spacetime Symmetries and Kepler's Third Law , 2012, 1202.2893.

[3]  Excision boundary conditions for black-hole initial data , 2004, gr-qc/0407078.

[4]  A. Buonanno,et al.  Gravitational self-force correction to the binding energy of compact binary systems. , 2011, Physical review letters.

[5]  Brandon Carter,et al.  The four laws of black hole mechanics , 1973 .

[6]  E. Poisson A Relativist's Toolkit , 2007 .

[7]  D. Christodoulou Reversible and Irreversible Transformations in Black-Hole Physics , 1970 .

[8]  S. Teukolsky,et al.  Quasicircular orbits for spinning binary black holes , 2000, gr-qc/0006084.

[9]  B. Whiting,et al.  Post-Newtonian and numerical calculations of the gravitational self-force for circular orbits in the Schwarzschild geometry , 2009, 0910.0207.

[10]  B. Whiting,et al.  High-Order Post-Newtonian Fit of the Gravitational Self-Force for Circular Orbits in the Schwarzschild Geometry , 2010, 1002.0726.

[11]  Abhay Shah,et al.  Extreme-mass-ratio inspiral corrections to the angular velocity and redshift factor of a mass in circular orbit about a Kerr black hole , 2012, 1207.5595.

[12]  T. Damour Gravitational scattering, post-Minkowskian approximation, and effective-one-body theory , 2016, 1609.00354.

[13]  J. Vines Scattering of two spinning black holes in post-Minkowskian gravity, to all orders in spin, and effective-one-body mappings , 2017, 1709.06016.

[14]  Brown,et al.  Quasilocal energy and conserved charges derived from the gravitational action. , 1992, Physical review. D, Particles and fields.

[15]  T. Damour,et al.  Hamiltonian of two spinning compact bodies with next-to-leading order gravitational spin-orbit coupling , 2007, 0711.1048.

[16]  G. B. Cook Corotating and irrotational binary black holes in quasicircular orbits , 2001, gr-qc/0108076.

[17]  A. Nagar Gravitational recoil in nonspinning black hole binaries: the span of test-mass results , 2013, 1306.6299.

[18]  T. Damour Gravitational self-force in a Schwarzschild background and the effective one-body formalism , 2009, 0910.5533.

[19]  P. Jaranowski,et al.  Dimensional regularization of local singularities in the 4th post-Newtonian two-point-mass Hamiltonian , 2013, 1303.3225.

[20]  M. Fitchett,et al.  Linear momentum and gravitational waves: circular orbits around a Schwarzschild black hole , 1984 .

[21]  Marc Favata Conservative corrections to the innermost stable circular orbit (ISCO) of a Kerr black hole: a new gauge-invariant post-Newtonian ISCO condition, and the ISCO shift due to test-particle spin and the gravitational self-force , 2010, 1010.2553.

[22]  L. Blanchet Innermost circular orbit of binary black holes at the third post-Newtonian approximation , 2001, gr-qc/0112056.

[23]  Circular orbits and spin in black-hole initial data , 2006, gr-qc/0605053.

[24]  Erik Schnetter,et al.  Collisions of unequal mass black holes and the point particle limit , 2011, 1105.5391.

[25]  A. L. Tiec,et al.  Thermodynamics of a Black Hole with Moon , 2012, 1210.8444.

[26]  Seidel,et al.  Head-on collision of two equal mass black holes. , 1995, Physical review. D, Particles and fields.

[27]  MON , 2020, Catalysis from A to Z.

[28]  Thibault Damour,et al.  Determination of the last stable orbit for circular general relativistic binaries at the third post-Newtonian approximation , 2000 .

[29]  T. Damour,et al.  Analytic determination of the eight-and-a-half post-Newtonian self-force contributions to the two-body gravitational interaction potential , 2014, 1403.2366.

[30]  E. Poisson,et al.  Nonrotating black hole in a post-Newtonian tidal environment , 2008, 0806.3052.

[31]  Eric Gourgoulhon,et al.  Binary black holes in circular orbits. II. Numerical methods and first results , 2002 .

[32]  ``Physical process version'' of the first law and the generalized second law for charged and rotating black holes , 2001, gr-qc/0106071.

[33]  Waveless Approximation Theories of Gravity , 2007, gr-qc/0702113.

[34]  T. Damour,et al.  Analytical determination of the two-body gravitational interaction potential at the fourth post-Newtonian approximation , 2013, 1305.4884.

[35]  D Huet,et al.  GW151226: Observation of Gravitational Waves from a 22-Solar-Mass Binary Black Hole Coalescence , 2016 .

[36]  D. Raine General relativity , 1980, Nature.

[37]  L. Smarr Mass Formula for Kerr Black Holes , 1973 .

[38]  T. Hinderer,et al.  Two timescale analysis of extreme mass ratio inspirals in Kerr. I. Orbital Motion , 2008, 0805.3337.

[39]  A. L. Tiec,et al.  First Law of Mechanics for Compact Binaries on Eccentric Orbits , 2015, 1506.05648.

[40]  Abhay Shah,et al.  Metric perturbations produced by eccentric equatorial orbits around a Kerr black hole , 2015, 1506.04755.

[41]  anonymous,et al.  Erratum: GW170104: Observation of a 50-Solar-Mass Binary Black Hole Coalescence at Redshift 0.2 [Phys. Rev. Lett. 118, 221101 (2017)]. , 2018, Physical review letters.

[42]  Katharina Burger,et al.  Frontiers In Numerical Relativity , 2016 .

[43]  G. Lovelace,et al.  High-accuracy gravitational waveforms for binary black hole mergers with nearly extremal spins , 2011, 1110.2229.

[44]  A 3+1 perspective on null hypersurfaces and isolated horizons , 2005, gr-qc/0503113.

[45]  B. P. Abbott,et al.  Erratum: Binary Black Hole Mergers in the First Advanced LIGO Observing Run [Phys. Rev. X 6 , 041015 (2016)] , 2018, Physical Review X.

[46]  T. Damour,et al.  Circular orbits of corotating binary black holes: Comparison between analytical and numerical results , 2002, gr-qc/0204011.

[47]  Iyer,et al.  Some properties of the Noether charge and a proposal for dynamical black hole entropy. , 1994, Physical review. D, Particles and fields.

[48]  L. Price,et al.  Gravitational Self-force in a Radiation Gauge , 2010, 1004.2276.

[49]  S. Detweiler Consequence of the gravitational self-force for circular orbits of the Schwarzschild geometry , 2008, 0804.3529.

[50]  Marc Favata Conservative self-force correction to the innermost stable circular orbit: Comparison with multiple post-Newtonian-based methods , 2010, 1008.4622.

[51]  Masaru Shibata,et al.  Thermodynamics of binary black holes and neutron stars , 2001, gr-qc/0108070.

[52]  Approximate Killing Vectors on S**2 , 2007, 0706.0199.

[53]  Abraham I. Harte,et al.  Gravitational Self-Torque and Spin Precession in Compact Binaries , 2013, 1312.0775.

[54]  Harald P. Pfeiffer,et al.  Simulations of unequal-mass black hole binaries with spectral methods , 2012, 1206.3015.

[55]  S. Marsat,et al.  Dimensional regularization of the IR divergences in the Fokker action of point-particle binaries at the fourth post-Newtonian order , 2017, 1706.08480.

[56]  B. A. Boom,et al.  Prospects for observing and localizing gravitational-wave transients with Advanced LIGO, Advanced Virgo and KAGRA , 2013, Living Reviews in Relativity.

[57]  E. Poisson A Relativist's Toolkit: Contents , 2004 .

[58]  A. Tsokaros,et al.  New code for equilibriums and quasiequilibrium initial data of compact objects. II. Convergence tests and comparisons of binary black hole initial data , 2012, 1210.5811.

[59]  Maarten van de Meent,et al.  Self-Force Corrections to the Periapsis Advance around a Spinning Black Hole. , 2016, 1610.03497.

[60]  B. A. Boom,et al.  Binary Black Hole Mergers in the First Advanced LIGO Observing Run , 2016, 1606.04856.

[61]  Is motion under the conservative self-force in black hole spacetimes an integrable Hamiltonian system? , 2015, 1503.04727.

[62]  Taming the nonlinearity of the Einstein equation. , 2014, Physical review letters.

[63]  T. Damour,et al.  Nonlocal-in-time action for the fourth post-Newtonian conservative dynamics of two-body systems , 2014, 1401.4548.

[64]  B. Carter Republication of: Black hole equilibrium states Part II. General theory of stationary black hole states , 2010 .

[65]  M. Shibata,et al.  Erratum: Thermodynamics of binary black holes and neutron stars [Phys. Rev. D 65, 064035 (2002)] , 2004 .

[66]  R. Znajek,et al.  General relativity and gravitation : one hundred years after the birth of Albert Einstein , 1980 .

[67]  B. A. Boom,et al.  GW170814: A Three-Detector Observation of Gravitational Waves from a Binary Black Hole Coalescence. , 2017, Physical review letters.

[68]  Hiroyuki Nakano,et al.  Hamiltonian formulation of the conservative self-force dynamics in the Kerr geometry , 2016, 1612.02504.

[69]  N. Sago,et al.  Gravitational self-force correction to the innermost stable circular orbit of a Schwarzschild black hole. , 2009, Physical review letters.

[70]  D. Holz,et al.  How Black Holes Get Their Kicks: Gravitational Radiation Recoil Revisited , 2004, astro-ph/0402056.

[71]  A. Ottewill,et al.  Analytical high-order post-Newtonian expansions for spinning extreme mass ratio binaries , 2016, 1601.03394.

[72]  T. Damour,et al.  Conservative dynamics of two-body systems at the fourth post-Newtonian approximation of general relativity , 2016, 1601.01283.

[73]  A. L. Tiec The Overlap of Numerical Relativity, Perturbation Theory and Post-Newtonian Theory in the Binary Black Hole Problem , 2012, 1408.5505.

[74]  Thibault Damour,et al.  Transition from inspiral to plunge in binary black hole coalescences , 2000 .

[75]  Mechanics of rotating isolated horizons , 2001, gr-qc/0103026.

[76]  S. Bonazzola,et al.  A formulation of the virial theorem in general relativity , 1994 .

[77]  Eric Gourgoulhon,et al.  Thermodynamics of magnetized binary compact objects , 2010, 1010.4409.

[78]  B. Whiting,et al.  Half-integral conservative post-Newtonian approximations in the redshift factor of black hole binaries , 2013, 1312.2975.

[79]  Michele Vallisneri,et al.  Detection template families for gravitational waves from the final stages of binary--black-hole inspirals: Nonspinning case , 2003 .

[80]  A. Taracchini,et al.  Periastron advance in black-hole binaries. , 2011, Physical review letters.

[81]  L. Szabados Quasi-Local Energy-Momentum and Angular Momentum in GR: A Review Article , 2004, Living reviews in relativity.

[82]  S. Marsat,et al.  Fokker action of nonspinning compact binaries at the fourth post-Newtonian approximation , 2015, 1512.02876.

[83]  Von Welch,et al.  Reproducing GW150914: The First Observation of Gravitational Waves From a Binary Black Hole Merger , 2016, Computing in Science & Engineering.

[84]  Aaron Zimmerman,et al.  Redshift Factor and the First Law of Binary Black Hole Mechanics in Numerical Simulations. , 2016, Physical review letters.

[85]  B. A. Boom,et al.  GW170104: Observation of a 50-Solar-Mass Binary Black Hole Coalescence at Redshift 0.2. , 2017, Physical review letters.

[86]  Lewandowski,et al.  Generic isolated horizons and their applications , 2000, Physical review letters.

[87]  B. Krishnan,et al.  Isolated and Dynamical Horizons and Their Applications , 2004, Living reviews in relativity.

[88]  W. Marsden I and J , 2012 .

[89]  Luc Blanchet,et al.  Gravitational Radiation from Post-Newtonian Sources and Inspiralling Compact Binaries , 2002, Living reviews in relativity.

[90]  N. W. Taylor,et al.  Periastron advance in spinning black hole binaries: Gravitational self-force from numerical relativity , 2013, 1309.0541.

[91]  Eric Poisson Absorption of mass and angular momentum by a black hole: Time-domain formalisms for gravitational perturbations, and the small-hole or slow-motion approximation , 2004 .

[92]  Philippe Grandclément,et al.  KADATH: A spectral solver for theoretical physics , 2009, J. Comput. Phys..

[93]  B. Whiting,et al.  High-order half-integral conservative post-Newtonian coefficients in the redshift factor of black hole binaries , 2014, 1405.5151.

[94]  Luc Blanchet,et al.  First law of binary black hole mechanics in general relativity and post-Newtonian theory , 2011, 1111.5378.

[95]  Michael Boyle,et al.  High-accuracy comparison of numerical relativity simulations with post-Newtonian expansions , 2007, 0710.0158.

[96]  A. Buonanno,et al.  First Law of Mechanics for Black Hole Binaries with Spins , 2012, 1211.1060.

[97]  Michael Boyle,et al.  Improved methods for simulating nearly extremal binary black holes , 2014, 1412.1803.

[98]  C. Klein Mathematik in den Naturwissenschaften Leipzig Binary black hole spacetimes with a helical Killing vector , 2004 .

[99]  L. Blanchet,et al.  First law of compact binary mechanics with gravitational-wave tails , 2017, 1702.06839.

[100]  Binary black holes in circular orbits. I. A global spacetime approach , 2001, gr-qc/0106015.

[101]  R. Geroch,et al.  Strings and other distributional sources in general relativity. , 1987, Physical review. D, Particles and fields.

[102]  A. Ori,et al.  Transition from inspiral to plunge for a compact body in a circular equatorial orbit around a massive, spinning black hole , 2000, gr-qc/0003032.