DeCoN: Genome-wide Analysis of In Vivo Transcriptional Dynamics during Pyramidal Neuron Fate Selection in Neocortex

UNLABELLED Neuronal development requires a complex choreography of transcriptional decisions to obtain specific cellular identities. Realizing the ultimate goal of identifying genome-wide signatures that define and drive specific neuronal fates has been hampered by enormous complexity in both time and space during development. Here, we have paired high-throughput purification of pyramidal neuron subclasses with deep profiling of spatiotemporal transcriptional dynamics during corticogenesis to resolve lineage choice decisions. We identified numerous features ranging from spatial and temporal usage of alternative mRNA isoforms and promoters to a host of mRNA genes modulated during fate specification. Notably, we uncovered numerous long noncoding RNAs with restricted temporal and cell-type-specific expression. To facilitate future exploration, we provide an interactive online database to enable multidimensional data mining and dissemination. This multifaceted study generates a powerful resource and informs understanding of the transcriptional regulation underlying pyramidal neuron diversity in the neocortex. VIDEO ABSTRACT

[1]  S. Mcconnell,et al.  Satb2 Regulates Callosal Projection Neuron Identity in the Developing Cerebral Cortex , 2008, Neuron.

[2]  Cole Trapnell,et al.  TopHat2: accurate alignment of transcriptomes in the presence of insertions, deletions and gene fusions , 2013, Genome Biology.

[3]  S. Wood Fast stable restricted maximum likelihood and marginal likelihood estimation of semiparametric generalized linear models , 2011 .

[4]  S. Horvath,et al.  Functional organization of the transcriptome in human brain , 2008, Nature Neuroscience.

[5]  S. Mcconnell,et al.  Faculty Opinions recommendation of Neuronal subtype-specific genes that control corticospinal motor neuron development in vivo. , 2005 .

[6]  J. Kleinman,et al.  Spatiotemporal transcriptome of the human brain , 2011, Nature.

[7]  Steven A. Connor,et al.  An LRRTM4-HSPG Complex Mediates Excitatory Synapse Development on Dentate Gyrus Granule Cells , 2013, Neuron.

[8]  M. Picciotto,et al.  FACS Identifies Unique Cocaine-Induced Gene Regulation in Selectively Activated Adult Striatal Neurons , 2011, The Journal of Neuroscience.

[9]  P. Arlotta,et al.  Neuronal subtype specification in the cerebral cortex , 2007, Nature Reviews Neuroscience.

[10]  P. Arlotta,et al.  Fezl Is Required for the Birth and Specification of Corticospinal Motor Neurons , 2005, Neuron.

[11]  E. Shooter,et al.  Nerve growth factor receptor immunoreactivity is transiently associated with the subplate neurons of the mammalian cerebral cortex. , 1990, Proceedings of the National Academy of Sciences of the United States of America.

[12]  Jun S. Song,et al.  Integration of genome-wide approaches identifies lncRNAs of adult neural stem cells and their progeny in vivo. , 2013, Cell stem cell.

[13]  J. Harrow,et al.  Assessment of transcript reconstruction methods for RNA-seq , 2013, Nature Methods.

[14]  T. Maniatis,et al.  An RNA-Sequencing Transcriptome and Splicing Database of Glia, Neurons, and Vascular Cells of the Cerebral Cortex , 2014, The Journal of Neuroscience.

[15]  Michael Morse,et al.  Multiple knockout mouse models reveal lincRNAs are required for life and brain development , 2013, eLife.

[16]  Chris P. Ponting,et al.  A Transcriptomic Atlas of Mouse Neocortical Layers , 2011, Neuron.

[17]  Wilfried Haerty,et al.  Considerations when investigating lncRNA function in vivo , 2014, eLife.

[18]  Hongkui Zeng,et al.  Correlated gene expression and target specificity demonstrate excitatory projection neuron diversity. , 2015, Cerebral cortex.

[19]  Paola Arlotta,et al.  Neuronal Subtype-Specific Genes that Control Corticospinal Motor Neuron Development In Vivo , 2005, Neuron.

[20]  Pico Caroni,et al.  Selective Neuronal Vulnerability in Neurodegenerative Diseases: from Stressor Thresholds to Degeneration , 2011, Neuron.

[21]  C. Ponting,et al.  Genomic and Transcriptional Co-Localization of Protein-Coding and Long Non-Coding RNA Pairs in the Developing Brain , 2009, PLoS genetics.

[22]  C. Ponting,et al.  Evolution and Functions of Long Noncoding RNAs , 2009, Cell.

[23]  Ting Wang,et al.  Track data hubs enable visualization of user-defined genome-wide annotations on the UCSC Genome Browser , 2013, Bioinform..

[24]  P. Greengard,et al.  Resource Application of a Translational Profiling Approach for the Comparative Analysis of CNS Cell Types , 2009 .

[25]  Pablo Tamayo,et al.  Gene set enrichment analysis: A knowledge-based approach for interpreting genome-wide expression profiles , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[26]  Manolis Kellis,et al.  The tissue-specific lncRNA Fendrr is an essential regulator of heart and body wall development in the mouse. , 2013, Developmental cell.

[27]  C. Walsh,et al.  Expression of Cux‐1 and Cux‐2 in the subventricular zone and upper layers II–IV of the cerebral cortex , 2004, The Journal of comparative neurology.

[28]  J. Rinn,et al.  Gene co-regulation by Fezf2 selects neurotransmitter identity and connectivity of corticospinal neurons , 2014, Nature Neuroscience.

[29]  Pasko Rakic,et al.  Transcriptional programs in transient embryonic zones of the cerebral cortex defined by high-resolution mRNA sequencing , 2011, Proceedings of the National Academy of Sciences.

[30]  L. Subramanian,et al.  Dynamic spatiotemporal expression of LIM genes and cofactors in the embryonic and postnatal cerebral cortex , 2003, Developmental dynamics : an official publication of the American Association of Anatomists.

[31]  P. Arlotta,et al.  Novel Subtype-Specific Genes Identify Distinct Subpopulations of Callosal Projection Neurons , 2009, The Journal of Neuroscience.

[32]  David G Hendrickson,et al.  Differential analysis of gene regulation at transcript resolution with RNA-seq , 2012, Nature Biotechnology.

[33]  C. Lobe,et al.  A comparison of Notch, Hes and Grg expression during murine embryonic and post-natal development. , 1999, Cellular and molecular biology.

[34]  D. Gifford,et al.  MARIS: Method for Analyzing RNA following Intracellular Sorting , 2014, PloS one.

[35]  Gord Fishell,et al.  The Neuron Identity Problem: Form Meets Function , 2013, Neuron.

[36]  S. Sunkin,et al.  Specific expression of long noncoding RNAs in the mouse brain , 2008, Proceedings of the National Academy of Sciences.

[37]  G. Gyapay,et al.  KIF1A missense mutations in SPG30, an autosomal recessive spastic paraplegia: distinct phenotypes according to the nature of the mutations , 2012, European Journal of Human Genetics.

[38]  Z. Molnár,et al.  Molecular diversity of early-born subplate neurons. , 2013, Cerebral cortex.

[39]  S. Nelson,et al.  Molecular taxonomy of major neuronal classes in the adult mouse forebrain , 2006, Nature Neuroscience.

[40]  Jean YH Yang,et al.  Bioconductor: open software development for computational biology and bioinformatics , 2004, Genome Biology.

[41]  D. Wilkin,et al.  Neuron , 2001, Brain Research.

[42]  George Karypis,et al.  Hierarchical Clustering Algorithms for Document Datasets , 2005, Data Mining and Knowledge Discovery.

[43]  Joanna L. Sharman,et al.  IUPHAR-DB: updated database content and new features , 2012, Nucleic Acids Res..

[44]  David R. Kelley,et al.  Long noncoding RNAs regulate adipogenesis , 2013, Proceedings of the National Academy of Sciences.

[45]  J. Rinn,et al.  lincRNAs act in the circuitry controlling pluripotency and differentiation , 2011, Nature.

[46]  Paulo P. Amaral,et al.  Long noncoding RNAs in mouse embryonic stem cell pluripotency and differentiation. , 2008, Genome research.

[47]  T. Jensen,et al.  Interaction profiling identifies the human nuclear exosome targeting complex. , 2011, Molecular cell.

[48]  Allan R. Jones,et al.  Genome-wide atlas of gene expression in the adult mouse brain , 2007, Nature.

[49]  D. Geschwind,et al.  Functional and Evolutionary Insights into Human Brain Development through Global Transcriptome Analysis , 2009, Neuron.

[50]  Y. Kubota,et al.  GABAergic cell subtypes and their synaptic connections in rat frontal cortex. , 1997, Cerebral cortex.

[51]  David R. Kelley,et al.  Differential gene and transcript expression analysis of RNA-seq experiments with TopHat and Cufflinks , 2012, Nature Protocols.

[52]  Cole Trapnell,et al.  Transcript assembly and quantification by RNA-Seq reveals unannotated transcripts and isoform switching during cell differentiation. , 2010, Nature biotechnology.

[53]  Mary Kay Lobo,et al.  FACS-array profiling of striatal projection neuron subtypes in juvenile and adult mouse brains , 2006, Nature Neuroscience.

[54]  J. Mattick,et al.  Long non-coding RNAs: insights into functions , 2009, Nature Reviews Genetics.

[55]  Mingfeng Li,et al.  Laminar and temporal expression dynamics of coding and noncoding RNAs in the mouse neocortex. , 2014, Cell reports.

[56]  Cole Trapnell,et al.  Integrative annotation of human large intergenic noncoding RNAs reveals global properties and specific subclasses. , 2011, Genes & development.

[57]  Allan R. Jones,et al.  An anatomically comprehensive atlas of the adult human brain transcriptome , 2012, Nature.

[58]  P. Greengard,et al.  A Translational Profiling Approach for the Molecular Characterization of CNS Cell Types , 2008, Cell.

[59]  J. Mattick,et al.  Structure and function of long noncoding RNAs in epigenetic regulation , 2013, Nature Structural &Molecular Biology.